SITE C CLEAN ENERGY PROJECT

VOLUME 2 APPENDIX L

TECHNICAL DATA REPORT: AIR QUALITY

FINAL REPORT

Prepared for:

BC Hydro Power and Authority 333 Dunsmuir Street Vancouver, BC V6B 5R3

Prepared by:

RWDI AIR Inc. 830 – 999 West Broadway Vancouver, BC V5Z 1K5 Tel: (604) 730-5688 Fax: (604) 730-2915

November 2012

06-113

CONSULTING ENGINEERS & SCIENTISTS

1

SITE C CLEAN ENERGY PROJECT

TECHNICAL DATA REPORT: AIR QUALITY

FINAL REPORT

1	Pre	epared for BC Hydro Power and Authority
2		Prepared by RWDI AIR Inc.
3		November 2012
4	Lead Author:	Jeff Lundgren, M.Sc., Technical Director
5		
6	Section Contributors:	David Chadder, Hon. B.Sc., QEP, Principal/Senior Consultant
7		Nancy Chan, B.A.Sc., P.Eng., Senior Engineer
8		Kathy Preston, Ph.D., P.Eng., Project Director
9		Christian Reuten, Ph.D., ACM, Senior Scientist
10		Andres Soux, M.Sc., Senior Scientist
11		Brian Sulley, B.A.Sc., P.Eng., Senior Specialist
12		Marco Wong, M.A.Sc., EIT, Intermediate Engineer
13		
14		
15		

1 EXECUTIVE SUMMARY

2 The Site C Clean Energy Project (the Project) is a proposed third dam and hydroelectric

3 generating station on the Peace River in northeast BC. The Project, consisting of an earthfill

4 dam approximately 1,050 metres in length, would provide up to 1,100 megawatts of

5 capacity, and produce about 5,100 gigawatt-hours of electricity each year.

6 Construction and operation of the Project have the potential to change local and regional air

7 quality. The Project components that are expected to be sources of emissions during

8 construction include the dam, generating station and spillways, quarried and excavated

9 construction materials, road and rail access and transmission line. Construction vehicles

10 and equipment would be sources of combustion and fugitive dust emissions. Clearing and

11 burning vegetation and debris would also result in combustion and fugitive dust emissions,

12 as would the extraction of construction materials from quarries during construction.

13 During operations, there is potential for the Site C reservoir to influence the local air quality

14 during dry periods of the year when the reservoir water level is lower than normal. Dry

15 reservoir bottoms have been known to be sources of fugitive dust emissions when coupled

16 with a wind speed high enough to entrain the sediments into the air. However, wind erosion

17 is not expected to pose a major air quality issue for the Project given the reservoir

18 configuration and steep reservoir banks, and the small reservoir operating range. Other

19 potential emission sources during operation are combustion emissions from maintenance

20 vehicles and vessels. Emissions during operations would be much lower than during

21 construction.

22 The objectives of the Air Quality technical study were to:

- Characterize the existing baseline air quality in terms of observed ambient air quality and emissions
 - Estimate emissions due to Project construction and operations
- Predict changes to ambient air quality in the dam site area due to Project construction
- 28

25

Discuss potential changes to ambient air quality during Project operations

29 The information presented in this technical data report was used to evaluate the potential

30 effects of the Project on human health (See EIS Volume 4 Section 33 Human Health).

31 Study Areas

32 Two areas were used for the air quality technical study: a technical study area and a

dispersion modelling study area. The technical study area is a 138 km by 102 km area that

34 encompasses all Project components, including the West Pine Quarry, as well as the City

35 of Fort St. John and the District of Taylor. All Project emissions are expected to occur within

- 1 the technical study area. The dispersion modelling study area measures 26 km by 27 km,
- 2 and includes a minimum 5 km buffer around the dam site area, Wuthrich Quarry, Area E,
- 3 and extends north to the community of Charlie Lake and east to the District of Taylor. The
- 4 dispersion modelling study area was defined to consider ambient concentrations of air
- 5 contaminants due to Project emissions at the Site C dam site due to its location close to
- 6 Fort St. John.
- 7 Subsets of the technical study area were defined around the construction material sources
- 8 (Wuthrich Quarry, West Pine Quarry, 85th Avenue Industrial Lands, Portage Mountain
- 9 Quarry and Del Rio Pit) and Hudson's Hope Shoreline Protection to further characterize
- 10 baseline settings and Project emissions in these areas. These subsets are 12 km by 12 km
- 11 squares, specified with a minimum 5 km buffer around each Project component.

12 Methods

- 13 The focus of the air quality technical study for the Project are criteria air contaminants (i.e.,
- 14 air contaminants for which there are either ambient air quality objectives or Canada-wide
- 15 standards). These include particulate matter, nitrogen dioxide, sulphur dioxide, and carbon
- 16 monoxide. Ambient air quality objectives and Canada-wide standards are criteria
- 17 established by environmental and health authorities to provide guidance for environmental
- 18 protection decisions. These criteria are based on scientific studies that consider the
- 19 influence of the contaminant on such receptors as humans, wildlife, vegetation, as well as
- 20 aesthetic qualities such as visibility.
- 21 Baseline emissions for the two study areas were obtained from the BC Ministry of
- 22 Environment and from Environment Canada's National Pollutant Release Inventory.
- 23 Baseline ambient air quality conditions in the technical study area were determined based
- on a review of available monitoring data. Particulate matter, nitrogen dioxide, sulphur
- dioxide, and ozone data from Fort St. John North Peace Cultural Centre, Taylor Townsite,
- and Taylor South Hill stations, were obtained from the BC Ministry of Environment and used
- in the baseline study. As well, dustfall monitoring data from existing and closed mines
- within the vicinity of the Project activity zone were obtained from public reports on the
- 29 Environmental Assessment Office website. Additional air quality monitoring data from
- 30 Beaverlodge and Grand Prairie were downloaded from the Clean Air Strategic Alliance data
- 31 warehouse to establish baseline carbon monoxide concentrations and to provide additional
- 32 reference points for nitrogen dioxide and ozone. Furthermore, two ambient air quality
- 33 monitoring stations were installed at Attachie Flat and Old Fort as part of field studies to
- 34 collect additional particulate matter data.
- 35 Representative background concentrations for the dispersion modelling study area were
- 36 calculated following the Guidelines for Air Quality Dispersion Modelling in British Columbia.

1 To evaluate the potential change to local air quality, Project emissions during construction

- 2 and operation were estimated and compared to baseline emissions. Project construction
- 3 emissions were estimated for every year of the expected eight-year construction period.
- 4 The scope of the emission inventory included the following emission sources, where
- 5 applicable: clearing activities; prescribed burning and incineration of clearing debris;
- 6 extraction, processing, movement and placement of construction and waste materials;
- 7 drilling; explosives detonation and blasting; material handling and transfers; concrete batch
- 8 plant operations; material processing; stockpile wind erosion; grading and scraping; fugitive
- 9 emissions of road dust on paved and unpavedroads; mobile vehicle exhaust; diesel-fuelled
- 10 equipment and generators; boats; aircraft and asphalt production.
- 11 Project operation emissions were estimated for regular maintenance activities at the Site C

12 dam site. Emissions sources during Project operation include: road dust re-entrainment

13 from paved roads; and fossil fuel combustion from mobile vehicles, diesel equipment and

- 14 boats. Project emissions were estimated using emission factors from a number of sources
- 15 including: the United States Environmental Protection Agency (US EPA) AP-42 Compilation
- 16 of Air Pollutant Emission Factors and US EPA emission models. Other sources of emission
- 17 information include Environment Canada's *Criteria Air Contaminants Emission Inventory*
- 18 2002 Guidebook, the Air and Waste Management Association's Air Pollution Engineering
- 19 Manual, the Western Regional Air Partnership's Fugitive Dust Handbook, and the Chamber
- 20 of Shipping's Ocean-Going Vessels Emissions Inventory Report.
- 21 Concentrations of criteria air contaminants and dustfall deposition rates were predicted
- 22 using dispersion modelling for the construction year with the highest estimated emissions.
- 23 Dispersion modelling was conducted using the CALMET/CALPUFF modelling system using
- 24 the full three-dimensional CALMET mode. Meteorological, terrain and land cover
- 25 characterization data are required for dispersion modelling. Meteorological data were
- 26 obtained from the BC Ministry of Environment station at Taylor Townsite and the
- 27 Environment Canada station at Fort St. John Airport. Additional meteorological data were
- 28 obtained from six meteorological stations installed between Taylor and Hudson's Hope as
- 29 part of field studies. Terrain elevations and land cover characterization information were
- 30 obtained from GeoBase.
- In the technical study area, area sources and point sources are the largest contributors to
- 32 baseline particulate matter emissions; area sources emit most of the fine particulate matter
- 33 while point sources emit the most coarse sizes of particulate matter. Mobile sources,
- 34 primarily off-road equipment, are the largest contributors to baseline emissions of the other
- 35 criteria air contaminants. In the dispersion modelling study area, area sources, primarily
- related to agricultural activities, represent the largest contributors to baseline particulate
- 37 matter emissions, while point sources represent a smaller contributor compared to the

1 technical study area. Similar to the technical study area, mobile sources, primarily off-road

2 equipment, are the largest contributors to baseline emissions of the other criteria air

3 contaminants.

4 Findings

5 Construction of the Site C dam, generating station and spillways would contribute most of the coarse sized particulate matter for the technical study area. This would largely be due to 6 7 dust entrainment from the use of unpaved roads. Burning and incineration from clearing 8 activities are estimated to contribute most of the emissions of fine particulate matter and 9 carbon monoxide. For oxides of nitrogen and sulphur oxides, the largest source of 10 emissions would be asphalt production from road infrastructure. Estimated particulate 11 matter emissions were greatest in Year 1, 2, 3 or 5 of the eight-year construction period 12 depending on the size fraction. Estimated emissions of carbon monoxide were greatest in 13 Year 1, and estimated emissions of oxides of nitrogen and sulphur oxides were greatest in 14 Year 4. Total Project construction emissions for the year with greatest emissions are 15 estimated to increase existing overall emissions in the technical study area by 5 to 83%, depending on the contaminant. 16 17 The largest contributor of coarse particulate matter during the operations phase of the 18 Project would be road dust re-entrainment from the use of paved roads, while diesel 19 equipment would be the largest contributor of fine particulate matter and carbon monoxide. 20 Boats would account for most of the emissions of oxides of nitrogen and sulphur oxides. 21 The highest ambient air concentrations for all contaminants and the highest dustfall deposition rates were predicted to occur in the vicinity of Wuthrich Quarry. Dispersion 22 23 modelling results suggest that all relevant ambient air guality objectives and Canada-wide 24 standards for particulate matter may be exceeded with or without the addition of

background. Exceedances were predicted from the Project, not including background, only

at one sensitive receptor, the North Camp Site located within the dam site area; no

27 exceedances were predicted at residences, other private buildings, schools, child care,

health care, or senior care facilities. When background concentrations were included,

29 exceedances of PM₁₀ were also predicted at one residence located within, and a few non-

30 residential buildings adjacent to, the proposed dam site area. When background

31 concentrations were included, exceedances of PM_{2.5} were also predicted at the proposed

32 South Camp Site located within the dam site area and at a few non-residential buildings in

33 the vicinity of the Site C dam site. The provincial objective for dustfall may be exceeded

34 with the addition of background within the dam site area, but exceedances were not

35 predicted to occur at any sensitive receptors. Maximum predicted concentrations of

36 nitrogen dioxide, sulphur dioxide and carbon monoxide were well below relevant ambient

37 air quality objectives.

1	Abbreviations and Acrony	ms
2	℃	degree Celsius
3	μm	
4	μg/m ³	Micrograms per cubic meter
5	ANFO	Ammonium nitrate with fuel oil
6	ASTER GDEM	Advanced Spaceborne Thermal Emission and Reflection Radiometer
7		Global Digital Elevation Model
8	AWMA	Air & Waste Management Association
9	BC	British Columbia
10	BCMOE	British Columbia Ministry of Environment
11	CACs	Criteria Air Contaminants
12	CEIDARS	California Emission Inventory and Reporting System
13	cm/s	
14	CO	Carbon monoxide
15	EAC	Environmental Assessment Certificate
16	EDMS	Emissions and Dispersion Modelling System
17	FSJ	
18	g	
19	g/kWh	Gram of pollutant per kilowatt-hour of engine power
20	g/y	
21	GWh	
22	h	
23	kg	kilogram
24	km	kilometres
25	km/h	
26	kPa	
27	m	
28	m ²	metres squared
29		metres cubed

1	mg/dm ² -d	Milligrams per decimeter squared per day
2	m/s	metres per second
3	MOVES	Motor Vehicle Emission Simulator
4	MW	Megawatt
5	NCEP	National Centers for Environmental Protection
6	NO	Nitrogen monoxide
7	NO ₂	Nitrogen dioxide
8	NO _x	Nitrogen oxides
9	NPRI	National Pollutant Release Inventory
10	O ₃	Ozone
11	OSB	Oriented Strand Board
12	PM ₁₀	Particulate matter with particle size of less than 10 μm
13	PM _{2.5}	Particulate matter with particle size of less than 2.5 μm
14	ppm	
15	ROW	Right-of-Way
16	SO ₂	
17	SO _x	
18	STC1	Attachie Flat Upper Terrace Station
19	STC2	Attachie Flat Lower Terrace Station
20	STC3	Attachie Plateau Station
21	STC4	Bear Flat Station
22	STC5	Hudson's Hope Station
23	STC6	
24	STC7	
25	STC8	Old Fort Station
26	TSP	Total Suspended Particulate
27	TT	
28	US EPA	United States Environmental Protection Agency
29	UTM	Universal Transverse Mercator

1	VKT	Vehicle Kilometres Travelled
2	W	Average weight of vehicles travelling the road
3	WRAP	Western Regional Air Partnership
4	WRF	Weather Research and Forecasting
5		

1 TABLE OF CONTENTS

2	List o	f Tables		xi
3	List of Figures xiii			
4	List of Appendicesxv			
5	1	Introductio	on	1
6		1.1 Conta	aminants and Ambient Air Quality Criteria	2
7	2	Methods		5
8		2.1 Study	y Area Boundaries	5
9		2.1.1	Technical Study Area	5
10		2.1.2	Dispersion Modelling Study Area	5
11		2.2 Revie	ew of Existing Data Sources	5
12		2.2.1	Emissions Data Sources	6
13		2.2.2	Ambient Air Quality Data Sources	6
14		2.2.3	Meteorological, Terrain and Land Cover Characterization Data Sources	7
15		2.3 Field	Surveys	8
16		2.4 Emis	sion Estimation	9
17		2.4.1	Prescribed Burning and Incineration	10
18		2.4.2	Bulldozing	11
19		2.4.3	Drilling	11
20		2.4.4	Explosives Detonation	12
21		2.4.5	Blasting	13
22		2.4.6	Material Handling	13
23		2.4.7	Conveyor Transfers	14
24		2.4.8	Concrete Batch Plant Operations	15
25		2.4.9	Material Processing	15
26		2.4.10	Stockpile Wind Erosion	16
27		2.4.11	Grading and Scraping	18
28		2.4.12	Unpaved Roads	19
29		2.4.13	Paved Roads	21
30		2.4.14	Motor Vehicle Combustion	21
31		2.4.15	Diesel-Fuelled Equipment	23
32		2.4.16	Diesel Generators	23
33		2.4.17	Boats	24
34		2.4.18	Aircraft	25
35		2.4.19	Asphalt Production	26
36		2.4.20	Clearing Activities	27

2.5 Dispersio	n Modelling	
2.5.1 C/	ALMET	29
2.5.1.1	Model Period	29
2.5.1.2	Model Domain	29
2.5.1.3	Prognostic Meteorology	29
2.5.1.4	Surface Meteorology	30
2.5.1.5	Terrain Elevation and Land Cover Characterization	30
2.5.1.6	Geophysical Parameters	30
2.5.1.7	Model Options and User Switches	31
2.5.2 C/	ALPUFF	
2.5.2.1	Model Domain	32
2.5.2.2	Receptor Locations	33
2.5.2.3	Technical Dispersion Options	34
2.5.2.4	Point Source Parameters	35
2.5.2.5	Volume Source Parameters	35
2.5.2.6	Area Source Parameters	36
2.5.2.7	Wet and Dry Deposition	36
2.5.2.8	Operation Schedule	37
2.5.3 M	odel Output Interpretation	
2.5.3.1	Summing of Model Results	38
2.5.3.2	NO _x to NO ₂ Chemistry	38
2.5.3.3	SO _x to SO ₂ Conversion	38
2.5.3.4	Determination of Background	39
2.6 Study Lin	nitations	39
3 Results of Bas	eline Investigations	40
3.1 Baseline	Emissions of Criteria Air Contaminants	40
3.1.1 Ba	seline Emissions in the Technical Study Area	41
3.1.1.1	Total Suspended Particulate	41
3.1.1.2	Particulate Matter Less than 10 Microns in Diameter	42
3.1.1.3	Particulate Matter Less than 2.5 Microns in Diameter	42
3.1.1.4	Oxides of Nitrogen	42
3.1.1.5	Sulphur Oxides	43
3.1.1.6	Carbon Monoxide	43
3.1.1.7	Summary	43
3.1.2 Ba	seline Emissions in the Dispersion Modelling Study Area	43
3.1.2.1	Total Suspended Particulate	44
3.1.2.2	Particulate Matter Less than 10 Microns in Diameter	45
	2.5.1 C/ 2.5.1.1 2.5.1.2 2.5.1.3 2.5.1.4 2.5.1.5 2.5.1.6 2.5.1.7 2.5.2 C/ 2.5.2.1 2.5.2.2 2.5.2.3 2.5.2.4 2.5.2.5 2.5.2.6 2.5.2.7 2.5.2.8 2.5.3 Mo 2.5.3.1 2.5.3.2 2.5.3.3 2.5.3.4 2.5.3.4 2.6 Study Lin 3 Results of Bas 3.1 Baseline 3.1.1 Ba 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.1.5 3.1.1.5 3.1.1.6 3.1.1.7 3.1.2 Ba	2.5.1 CALMET 2.5.1.1 Model Period 2.5.1.2 Model Domain 2.5.1.3 Prognostic Meteorology 2.5.1.4 Surface Meteorology 2.5.1.5 Terrain Elevation and Land Cover Characterization 2.5.1.6 Geophysical Parameters 2.5.1.7 Model Options and User Switches 2.5.2 CALPUFF 2.5.2.1 Model Domain 2.5.2.2 Receptor Locations 2.5.2.3 Technical Dispersion Options 2.5.2.4 Point Source Parameters 2.5.2.5 Volume Source Parameters 2.5.2.6 Area Source Parameters 2.5.2.7 Wet and Dry Deposition 2.5.2.8 Operation Schedule 2.5.3 Model Output Interpretation 2.5.3.1 Summing of Model Results 2.5.3.1 Summing of Model Results 2.5.3.3 SO ₂ to No ₂ Chemistry. 2.5.3.4 Determination of Background. 2.6 Study Limitations 3.1 Baseline Investigations 3.1.1 Baseline Emissions in the Technical Study Area 3.1.1.2 <

1		3.1.2.3	3 Particulate Matter Less than 2.5 Microns in Diameter	45
2		3.1.2.4		
3		3.1.2.	0	
4		3.1.2.6	•	
5		3.1.2.7		
6		-	Baseline Emissions in the Vicinity of Construction Material Sources and	
7			ludson's Hope Shoreline Protection	46
8		3.1.3.1	1 Wuthrich Quarry	46
9		3.1.3.2	2 85 th Avenue Industrial Lands	48
10		3.1.3.3	3 West Pine Quarry	49
11		3.1.3.4	4 Portage Mountain	50
12		3.1.3.	5 Del Rio Pit	51
13		3.1.3.6	6 Hudson's Hope Shoreline Protection	52
14	3	3.2 Meteoro	logy	53
15		3.2.1 T	opography	54
16		3.2.2 S	Surface Characteristics	54
17		3.2.3 N	lodelled Flow Regimes	55
18		3.2.4 N	lodelled Mixing Heights	56
19		3.2.5 C	Dbserved Winds	57
20	З	3.3 Ambient	Air Quality	57
21		3.3.1 F	Particulate Matter Concentrations	58
22		3.3.2 E	Dustfall Deposition	59
23		3.3.3 N	litrogen Dioxide	66
24		3.3.4 S	Sulphur Dioxide	66
25		3.3.5 C	Carbon Monoxide	67
26		3.3.6	Dzone	67
27		3.3.7 F	Representative Background Concentrations	68
28	4 F	Results of En	nission Estimation	70
29	4	.1 Constru	ction	70
30		4.1.1 S	ite C Dam Construction	70
31		4.1.2 C	Construction Material Sources – Wuthrich Quarry	72
32		4.1.3 C	Construction Material Sources – 85 th Avenue Industrial Lands	73
33		4.1.4 C	Construction Material Sources – West Pine Quarry	75
34		4.1.5 C	Construction Material Sources – Portage Mountain	75
35		4.1.6 C	Construction Material Sources – Del Rio Pit	76
36		4.1.7 C	Construction Material Sources - Area E	77
37		4.1.8 F	Iudson's Hope Shoreline Protection	78
38		4.1.9 F	Road Infrastructure	78

3 4.1.12 Summary of Project Emissions in the Study Areas 4 4.1.12.1 Technical Study Area 5 4.1.12.2 Dispersion Modelling Study Area 6 4.2 Operation 7 4.2.1 On-going Emissions from Regular Operation 8 4.2.2 Potential Wind Erosion of Exposed Shorelines 9 5 Results of Dispersion Modelling 10 5.1 Particulate Matter 11 5.1.1 TSP 12 5.1.2 PM ₁₀ 13 5.1.3 PM _{2.5} 14 5.1.4 Dustfall 15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 16 Closure 6 17 References 7 18 Figures 7 18 Figures 7 19 List of Tables 7 10 Table 2.2.1 Baseline ambient air quality monitoring data 12 Table 2.3.1 Project dimate station details 12 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers.	1		4.1.10 Transmission Line	79
4 4.1.12.1 Technical Study Area 5 4.1.12.2 Dispersion Modelling Study Area 6 4.2 Operation 7 4.2.1 On-going Emissions from Regular Operation 8 4.2.2 Potential Wind Erosion of Exposed Shorelines 9 5 9 5 9 5 9 5 9 5 10 5.1 Particulate Matter 11 5.1.1 TSP 12 5.1.2 PM ₁₀ 13 5.1.3 PM _{2.5} 14 5.1.4 Dustfall 15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 16 6 17 7 18 Figures 19 List of Tables 10 Table 1.2.1 Birtish Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 12 Table 2.3.1 Project ambient air quality monitoring data 12 Table 2.3.2 Project climate station details 12 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers. 12 Table 2.4.2 Emission factors of concrete batch plant operations 12 Table 2.4.4 Unpa	2		4.1.11 Clearing	80
5 4.1.12.2 Dispersion Modelling Study Area 6 4.2 Operation 7 4.2.1 On-going Emissions from Regular Operation 8 4.2.2 Potential Wind Erosion of Exposed Shorelines 9 5 8 4.2.2 Potential Wind Erosion of Exposed Shorelines 9 5 10 5.1 11 5.1 12 5.2 13 5.1.4 14<	3		4.1.12 Summary of Project Emissions in the Study Areas	82
6 4.2 Operation 7 4.2.1 On-going Emissions from Regular Operation 8 4.2.2 Potential Wind Erosion of Exposed Shorelines 9 5 9 5 9 5 9 5 10 5.1 Particulate Matter 11 5.1.1 TSP 12 5.1.2 PM ₁₀ 13 5.1.3 PM _{2.5} 14 5.1.4 Dustfall 15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 16 6 17 References 18 Figures 19 List of Tables 10 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 12 Table 2.1 Baseline ambient air quality monitoring data 12 Table 2.3.1 Project ambient air quality monitoring station details 12 Table 2.3.2 Project climate station details 12 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers 12 Table 2.4.2 Emission factors of concrete batch plant operations 12 Table 2.4.3 Emission factors of material processing operations 12 T	4		4.1.12.1 Technical Study Area	82
7 4.2.1 On-going Emissions from Regular Operation 8 4.2.2 Potential Wind Erosion of Exposed Shorelines 9 5 Results of Dispersion Modelling 10 5.1 Particulate Matter 11 5.1.1 TSP 12 5.1.2 PM ₁₀ 13 5.1.3 PM _{2.5} 14 5.1.4 Dustfall 15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 16 Closure 6 17 7 References 18 8 Figures 19 List of Tables 12 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 12 Table 2.3.1 Project ambient air quality monitoring data 13 Table 2.3.2 Project climate station details 14 Table 2.3.2 Project climate station details 15 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers 16 Classion factors of concrete batch plant operations 17 Table 2.4.2 Emission factors of material processing operatio	5		4.1.12.2 Dispersion Modelling Study Area	83
8 4.2.2 Potential Wind Erosion of Exposed Shorelines 9 5 Results of Dispersion Modelling 10 5.1 Particulate Matter 11 5.1.1 TSP 12 5.1.2 PM ₁₀ 13 5.1.3 PM _{2.5} 14 5.1.4 Dustfall 15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 16 6 Closure 17 7 References 18 8 Figures 19 List of Tables 20 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 21 Table 2.3.1 Project ambient air quality monitoring data 23 Table 2.3.1 Project climate station details 24 Table 2.3.2 Project climate station details 25 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers 26 Table 2.4.2 Emission factors of concrete batch plant operations 27 Table 2.4.3 Emission factors of material processing operations 28 Table 2.4.4 Unpav	6	4.2	- F	
95Results of Dispersion Modelling105.1Particulate Matter115.1.1TSP125.1.2PM10135.1.3PM25145.1.4Dustfall155.2Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide16Closure177References18819List of Tables20Table 1.2.121Baseline ambient air quality objectives and Canada-wide standard for criteria air contaminants22Table 2.3.123Table 2.3.124Table 2.3.225Table 2.4.126Table 2.4.127Table 2.4.228Emission factors of concrete batch plant operations29Table 2.4.320Emission factors of material processing operations21Table 2.4.422Unpaved roads, empirical constants for emissions29Table 2.4.520Worker transport vehicle activity at construction material source areas and the Site C dam site.21Table 2.4.622Paved roads, particle size multipliers23Table 2.4.724MOVES input parameter data sources25Table 2.4.826Diesel generator horsepower ratings and fuel consumption rates				
10 5.1 Particulate Matter 11 5.1.1 TSP 12 5.1.2 PM ₁₀ 13 5.1.3 PM _{2.5} 14 5.1.4 Dustfall 15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 16 Closure 17 References 18 Figures 19 List of Tables 20 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 21 Table 2.3.1 Project ambient air quality monitoring data 23 Table 2.3.1 Project ambient air quality monitoring station details 24 Table 2.3.2 Project climate station details 25 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers 26 Table 2.4.2 Emission factors of concrete batch plant operations 27 Table 2.4.3 Emission factors of material processing operations 28 Table 2.4.4 Unpaved roads, empirical constants for emissions 29 Table 2.4.5 Worker transport vehicle activity at construction material source areas and the Site C dam site. 31 Table 2.4.6 Paved roads, particle size multipliers 32 Table 2.4.7 MOVES input parameter data sources 33	8		·····	
11 5.1.1 TSP 12 5.1.2 PM ₁₀ 13 5.1.3 PM _{2.5} 14 5.1.4 Dustfall 15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 6 Closure 6 17 7 References 18 Figures 7 19 List of Tables 7 10 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 12 Table 2.2.1 Baseline ambient air quality monitoring data 12 Table 2.3.1 Project ambient air quality monitoring station details 12 Table 2.3.2 Project climate station details 12 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers. 12 Table 2.4.2 Emission factors of concrete batch plant operations 12 Table 2.4.3 Emission factors of material processing operations 13 Table 2.4.4 Unpaved roads, empirical constants for emissions 14 Table 2.4.6 Paved roads, particle size multipliers 15 Table 2.4.6 Paved roads, particle siz	-			
12 5.1.2 PM ₁₀		5.1		
13 5.1.3 PM2.5 14 5.1.4 Dustfall 15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 16 Closure 6 17 7 References 18 8 Figures 19 List of Tables 20 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 21 Table 2.2.1 Baseline ambient air quality monitoring data 23 Table 2.3.1 Project ambient air quality monitoring station details 24 Table 2.3.2 Project climate station details 25 Table 2.4.1 PM2.5 and PM10 size fraction multipliers 26 Table 2.4.2 Emission factors of concrete batch plant operations 27 Table 2.4.3 Emission factors of material processing operations 28 Table 2.4.4 Unpaved roads, empirical constants for emissions 29 Table 2.4.5 Worker transport vehicle activity at construction material source areas and the Site C dam site. 31 Table 2.4.6 Paved roads, particle size multipliers 32 Table 2.4.7 MOVES input parameter data so				
14 5.1.4 Dustfall 15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 16 Closure 17 7 References 7 18 Figures 19 List of Tables 10 Table 1.2.1 11 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 12 Table 2.2.1 13 Baseline ambient air quality monitoring data 14 Table 2.3.1 15 Project ambient air quality monitoring station details 16 Table 2.3.2 17 Table 2.4.1 18 Emission factors of concrete batch plant operations 17 Table 2.4.3 18 Emission factors of material processing operations 17 Table 2.4.4 Unpaved roads, empirical constants for emissions 18 Table 2.4.5 Worker transport vehicle activity at construction material source areas and the Site C dam site. 13 Table 2.4.6 Paved roads, particle size multipliers 131 Table 2.4.7 MOVES input parameter data sources 133 <td< td=""><td></td><td></td><td></td><td></td></td<>				
15 5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide 16 Closure 17 References 18 Figures 19 List of Tables 20 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 21 Table 2.2.1 Baseline ambient air quality monitoring data 22 Table 2.3.1 Project ambient air quality monitoring station details 23 Table 2.3.2 Project climate station details 24 Table 2.3.2 Project climate station details 25 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers 26 Table 2.4.2 Emission factors of concrete batch plant operations 27 Table 2.4.3 Emission factors of material processing operations 28 Table 2.4.4 Unpaved roads, empirical constants for emissions 29 Table 2.4.5 Worker transport vehicle activity at construction material source areas and the Site C dam site 31 Table 2.4.6 Paved roads, particle size multipliers 32 Table 2.4.7 MOVES input parameter data sources 33 Table 2.4.8 Diese			2.0	
16 Closure 17 References 18 Figures 19 List of Tables 20 Table 1.2.1 21 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 22 Table 2.2.1 23 Table 2.3.1 24 Table 2.3.2 25 Table 2.4.1 26 Table 2.4.2 27 Table 2.4.2 28 Table 2.4.3 29 Table 2.4.4 Unpaved roads, empirical constants for emissions 29 Table 2.4.5 Worker transport vehicle activity at construction material source areas and the Site C dam site. 31 Table 2.4.7 32 Table 2.4.8 33 Table 2.4.8		5.0		
7 References 18 Figures 19 List of Tables 20 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 21 Table 2.2.1 Baseline ambient air quality monitoring data 22 Table 2.3.1 Project ambient air quality monitoring station details 23 Table 2.3.2 Project climate station details 24 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers 25 Table 2.4.2 Emission factors of concrete batch plant operations 26 Table 2.4.3 Emission factors of material processing operations 27 Table 2.4.3 Emission factors of material processing operations 28 Table 2.4.4 Unpaved roads, empirical constants for emissions 29 Table 2.4.5 Worker transport vehicle activity at construction material source areas and the Site C dam site 31 Table 2.4.6 Paved roads, particle size multipliers 32 Table 2.4.7 MOVES input parameter data sources 33 Table 2.4.8 Diesel generator horsepower ratings and fuel consumption rates			-	
8 Figures 19 List of Tables 20 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 21 Table 2.2.1 Baseline ambient air quality monitoring data 22 Table 2.3.1 Project ambient air quality monitoring station details 23 Table 2.3.2 Project climate station details 24 Table 2.3.2 Project climate station details 25 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers 26 Table 2.4.2 Emission factors of concrete batch plant operations 27 Table 2.4.3 Emission factors of material processing operations 28 Table 2.4.4 Unpaved roads, empirical constants for emissions 29 Table 2.4.5 Worker transport vehicle activity at construction material source areas and the Site C dam site 31 Table 2.4.6 Paved roads, particle size multipliers 32 Table 2.4.7 MOVES input parameter data sources 33 Table 2.4.8 Diesel generator horsepower ratings and fuel consumption rates		-		-
19 List of Tables 20 Table 1.2.1 British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants 21 Table 2.2.1 Baseline ambient air quality monitoring data 23 Table 2.3.1 Project ambient air quality monitoring station details 24 Table 2.3.2 Project climate station details 25 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction multipliers 26 Table 2.4.2 Emission factors of concrete batch plant operations 27 Table 2.4.3 Emission factors of material processing operations 28 Table 2.4.4 Unpaved roads, empirical constants for emissions 29 Table 2.4.5 Worker transport vehicle activity at construction material source areas and the Site C dam site 31 Table 2.4.7 MOVES input parameter data sources 33 Table 2.4.8 Diesel generator horsepower ratings and fuel consumption rates				
20Table 1.2.1British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants22Table 2.2.1Baseline ambient air quality monitoring data23Table 2.3.1Project ambient air quality monitoring station details24Table 2.3.2Project climate station details25Table 2.4.1PM2.5 and PM10 size fraction multipliers26Table 2.4.2Emission factors of concrete batch plant operations27Table 2.4.3Emission factors of material processing operations28Table 2.4.4Unpaved roads, empirical constants for emissions29Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site.31Table 2.4.6Paved roads, particle size multipliers33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates	18	8 Fig	jures	99
20Table 1.2.1British Columbia ambient air quality objectives and Canada-wide standard for criteria air contaminants22Table 2.2.1Baseline ambient air quality monitoring data23Table 2.3.1Project ambient air quality monitoring station details24Table 2.3.2Project climate station details25Table 2.4.1PM2.5 and PM10 size fraction multipliers26Table 2.4.2Emission factors of concrete batch plant operations27Table 2.4.3Emission factors of material processing operations28Table 2.4.4Unpaved roads, empirical constants for emissions29Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site.31Table 2.4.6Paved roads, particle size multipliers33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates				
21for criteria air contaminants22Table 2.2.1Baseline ambient air quality monitoring data23Table 2.3.1Project ambient air quality monitoring station details24Table 2.3.2Project climate station details25Table 2.4.1PM2.5 and PM10 size fraction multipliers26Table 2.4.2Emission factors of concrete batch plant operations27Table 2.4.3Emission factors of material processing operations28Table 2.4.4Unpaved roads, empirical constants for emissions29Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site31Table 2.4.6Paved roads, particle size multipliers33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates	19	List of Ta	ables	
23Table 2.3.1Project ambient air quality monitoring station details24Table 2.3.2Project climate station details25Table 2.4.1PM2.5 and PM10 size fraction multipliers26Table 2.4.2Emission factors of concrete batch plant operations27Table 2.4.3Emission factors of material processing operations28Table 2.4.4Unpaved roads, empirical constants for emissions29Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site.31Table 2.4.6Paved roads, particle size multipliers33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates		Table 1.2.1	British Columbia ambient air quality objectives and Canada-wide standards for criteria air contaminants	3
24Table 2.3.2Project climate station details25Table 2.4.1PM2.5 and PM10 size fraction multipliers26Table 2.4.2Emission factors of concrete batch plant operations27Table 2.4.3Emission factors of material processing operations28Table 2.4.4Unpaved roads, empirical constants for emissions29Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site.31Table 2.4.6Paved roads, particle size multipliers32Table 2.4.7MOVES input parameter data sources33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates	22	Table 2.2.1	Baseline ambient air quality monitoring data	7
25Table 2.4.1PM2.5 and PM10 size fraction multipliers.26Table 2.4.2Emission factors of concrete batch plant operations27Table 2.4.3Emission factors of material processing operations28Table 2.4.4Unpaved roads, empirical constants for emissions29Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site.31Table 2.4.6Paved roads, particle size multipliers32Table 2.4.7MOVES input parameter data sources33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates	23	Table 2.3.1	Project ambient air quality monitoring station details	8
25Table 2.4.1PM2.5 and PM10 size fraction multipliers.26Table 2.4.2Emission factors of concrete batch plant operations27Table 2.4.3Emission factors of material processing operations28Table 2.4.4Unpaved roads, empirical constants for emissions29Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site.31Table 2.4.6Paved roads, particle size multipliers32Table 2.4.7MOVES input parameter data sources33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates	24	Table 2.3.2	Project climate station details	9
26Table 2.4.2Emission factors of concrete batch plant operations27Table 2.4.3Emission factors of material processing operations28Table 2.4.4Unpaved roads, empirical constants for emissions29Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site31Table 2.4.6Paved roads, particle size multipliers32Table 2.4.7MOVES input parameter data sources33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates	25	Table 2.4.1	-	
28Table 2.4.4Unpaved roads, empirical constants for emissions29Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site	26	Table 2.4.2	Emission factors of concrete batch plant operations	15
29 30Table 2.4.5Worker transport vehicle activity at construction material source areas and the Site C dam site	27	Table 2.4.3	Emission factors of material processing operations	16
30the Site C dam site31Table 2.4.632Table 2.4.733Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates	28	Table 2.4.4	Unpaved roads, empirical constants for emissions	20
32Table 2.4.7MOVES input parameter data sources33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates		Table 2.4.5	Worker transport vehicle activity at construction material source areas and the Site C dam site	21
32Table 2.4.7MOVES input parameter data sources33Table 2.4.8Diesel generator horsepower ratings and fuel consumption rates	31	Table 2.4.6	Paved roads, particle size multipliers	21
		Table 2.4.7	MOVES input parameter data aguraga	22
21 Table 2.4.0 Dower-based emission factors for main engine(s) in underway mode				
54 Table 2.4.9 Fower-based emission factors for main engine(s) in underway mode				

1	Table 2.5.1	Description of CALPUFF model runs	32
2	Table 2.5.2	UTM Coordinates of CALPUFF model domain	33
3	Table 2.5.3	CALPUFF model switch settings	34
4	Table 2.5.4	Point source stack parameters for diesel generators	35
5	Table 2.5.5	Volume source emission parameters	36
6	Table 2.5.6	Area source emission parameters	36
7	Table 3.1.1	Air emissions inventory for the technical study area	41
8	Table 3.1.2	Air emissions inventory for the dispersion modelling study area	44
9	Table 3.1.3	Air emissions inventory for 12 km by 12 km area centred on Wuthrich Quarry	47
10 11	Table 3.1.4	Air emissions inventory for 12 km by 12 km area centred on 85 th Avenue Industrial Lands	48
12 13	Table 3.1.5	Air emissions inventory for 12 km by 12 km area centred on West Pine Quarry	50
14 15	Table 3.1.6	Air emissions inventory for 12 km by 12 km area centred on Portage Mountain	51
16	Table 3.1.7	Air emissions inventory for 12 km by 12 km area centred on Del Rio Pit	52
17 18	Table 3.1.8	Air emissions inventory for 12 km by 12 km area centred on Hudson's Hope Shoreline Protection	53
19	Table 3.3.1	Dustfall measurements near Quintette and Bullmoose mines	60
20	Table 3.3.2	Dustfall measurements near Dillon mine	62
21	Table 3.3.3	Dustfall measurements near Willow Creek mine during mining operations	63
22 23	Table 3.3.4	Dustfall measurements near Willow Creek during non-operational care and maintenance	65
24	Table 3.3.5	Representative background concentrations (in μ g/m ³)	69
25	Table 4.1.1	Site C dam construction emissions (in tonnes)	71
26	Table 4.1.2	Vehicles in transit emissions (in tonnes)	71
27 28	Table 4.1.3	Modelled emissions from dam site area construction and vehicles in transit (in tonnes)	72
29	Table 4.1.4	Wuthrich quarry emissions (in tonnes)	
30	Table 4.1.5	Modelled emissions from Wuthrich Quarry (in tonnes)	73
31	Table 4.1.6	85 th Avenue industrial lands emissions (in tonnes)	74
32	Table 4.1.7	Modelled emissions from 85 th Avenue Industrial Lands (in tonnes)	74
33	Table 4.1.8	West Pine quarry emissions (in tonnes)	75
34	Table 4.1.9	Portage Mountain emissions (in tonnes)	76
35	Table 4.1.10	Del Rio Pit emissions (in tonnes)	77

1	Table 4.1.11	Area E emissions (in tonnes)	. 77
2	Table 4.1.12	Modelled emissions from Area E (in tonnes)	. 78
3	Table 4.1.13	Hudson's Hope Shoreline Protection emissions (in tonnes)	. 78
4	Table 4.1.14	Road infrastructure emissions (in tonnes)	. 79
5	Table 4.1.15	Transmission line emissions (in tonnes)	. 80
6	Table 4.1.16	Burning and incineration emissions (in tonnes)	. 81
7 8	Table 4.1.17	Emissions due to clearing activities (excluding burning and incineration) (in tonnes)	. 81
9	Table 4.1.18	Clearing activities and Site C dam construction emissions (in tonnes)	. 82
10 11	Table 4.1.19	Total annual Project emissions (excluding burning and incineration in Years 1 to 3) (in tonnes)	. 82
12 13	Table 4.1.20	Total annual Project emissions (including burning and incineration in Years 1 to 3) (in tonnes)	. 83
14	Table 4.1.21	Total annual Project mobile emissions (in tonnes)	. 83
15 16	Table 4.1.22	Total annual Project emissions (in tonnes) in the dispersion modelling study area	. 84
17	Table 4.2.1	Emissions from operation and maintenance activities (in tonnes)	. 84
18 19	Table 5.1.1	Maximum predicted concentrations of TSP at various receptors in the dispersion modelling study area	. 87
20 21	Table 5.1.2	Frequency of exceedance of Canada-wide Standards and BC objectives for receptor types in the dispersion modelling study area with background	. 88
22 23	Table 5.1.4	Maximum predicted concentrations of PM _{2.5} at various receptors in the dispersion modelling study area. Values in red exceed BC objective	. 90
24 25	Table 5.1.5	Maximum predicted deposition rate of dustfall at various receptors in the dispersion modelling study area	. 91
26 27	Table 5.2.1	Maximum predicted concentrations of NO_2 and NO_x at various receptors in the dispersion modelling study area	. 92
28 29	Table 5.2.2	Maximum predicted concentrations of SO ₂ at various receptors in the dispersion modelling study area	. 93
30 31	Table 5.2.3	Maximum modelled concentrations of CO at various receptors in the dispersion modelling study area	. 94

32 List of Figures

33	Figure 2.1.1	Air quality technical and dispersion modelling study areas	100
34 35	•	Locations of the ambient air quality monitoring stations within the technical study area	101

1 2	Figure 2.3.1	Locations of climate and meteorological stations within the technical study area	. 102
3	Figure 2.5.1	Dispersion modelling study area receptor grid	. 103
4 5 6	Figure 3.2.1	Topography in dispersion modelling study area and meteorological stations including Site C Dam (STC7), Fort St. John Airport (FSJ), and Taylor Townsite (TT)	104
7 8	Figure 3.2.2	Land cover characterization and surface roughness length in winter without snow cover in dispersion modelling study area	. 105
9 10	Figure 3.3.1	Time series of 30-day median PM10 concentrations at Fort St. John Airport for the period 2000 to 2012	. 106
11 12	Figure 3.3.2	Box plot of 24-hour average PM2.5 concentrations at Attachie Flat Upper Terrace and Old Fort stations	107
13 14	Figure 3.3.3	Box plot of 24-hour average PM10 concentrations at Fort St. John, Attachie Flat Upper Terrace and Old Fort stations	. 108
15 16	Figure 3.3.4	Time series of 30-day median NO2 concentrations at Beaverlodge for the period 2000 to 2012	109
17 18	Figure 3.3.5	Time series of 30-day median NO2 concentrations at Grand Prairie station for period 2000 to 2012	110
19 20	Figure 3.3.6	Box plot for 1-hour average NO2 concentrations for the Beaverlodge, Grand Prairie and Taylor Townsite stations	111
21 22	Figure 3.3.7	Box plot for 24-hour average NO2 concentrations for the Beaverlodge, Grand Prairie and Taylor Townsite stations	112
23 24	Figure 3.3.8	Time series of 30-day median SO2 concentrations at Taylor Townsite station for the period 2000 to 2012	113
25 26	Figure 3.3.9	Time series 30-day median SO2 concentrations at Taylor South Hill station for period 2000 to 2012	114
27 28	Figure 3.3.10	Box plot for 1-hour average SO2 concentrations for Taylor Townsite and Taylor South Hill stations	115
29 30	Figure 3.3.11	Box plot of 24-hour average SO2 concentrations at Taylor Townsite and Taylor South Hill stations	116
31 32	Figure 3.3.12	Time series of 30-day median CO concentrations at the Grand Prairie station for the period 2004 to 2012	117
33	Figure 3.3.13	Box plot for 1-hour average CO concentrations for the Grand Prairie station	. 118
34	Figure 3.3.14	Box plot for 8-hour average CO concentrations at the Grand Prairie station	. 119
35 36	Figure 3.3.15	8-hour average ozone concentrations at Taylor Townsite station for the period from January 2000 to January 2002	120
37 38	Figure 3.3.16	8-hour average ozone concentrations at Grand Prairie station for the period from February 2004 to January 2012	121
39 40	Figure 5.1.1	Maximum predicted 24-hour Total Suspended Particulate concentrations with background	122

1 2	Figure 5.1.2	Maximum predicted annual Total Suspended Particulate concentrations with background	. 123
3 4	Figure 5.1.3	Frequency of exceedance – Predicted 24-hour Total Suspended Particulate concentrations with background	. 124
5	Figure 5.1.4	Maximum predicted 24-hour PM ₁₀ concentrations with background	. 125
6 7	Figure 5.1.5	Frequency of exceedance – Predicted 24-hour PM ₁₀ concentrations with background	. 126
8 9	Figure 5.1.6	Ninety-eighth percentile predicted 24-hour PM _{2.5} concentrations with background	. 127
10	Figure 5.1.7	Maximum predicted annual PM _{2.5} concentrations with background	. 128
11 12	Figure 5.1.8	Frequency of exceedance – Ninety-eighth percentile predicted 24-hour PM _{2.5} concentrations with background	. 129
13	Figure 5.1.9	Maximum predicted 30-day dustfall deposition rate with background	. 130
14 15	Figure 5.1.10	Frequency of exceedance (non-residential) – predicted 30-day dustfall deposition rate with background	. 131
16	Figure 5.2.1	Maximum predicted 1-hour NO ₂ concentrations with background	. 132
17	Figure 5.2.2	Maximum predicted 1-hour SO ₂ concentrations with background	. 133
18	Figure 5.2.3	Maximum predicted 1-hour CO concentrations with background	. 134

19 List of Appendices

Emission Inventory Methods	Appendix A	20
Conceptual Model Plan	Appendix B	21
CALMET	Appendix C	22
List of Sensitive Receptors	Appendix D	23
Baseline Emissions	Appendix E	24
Project Emissions	Appendix F	25
Dispersion Modelling Results	Appendix G	26
Glossary	Appendix H	27
		28

- 29
- 20

1 **1 INTRODUCTION**

2 The Site C Clean Energy Project (the Project) is a proposed third dam and hydroelectric

3 generating station on the Peace River in northeast BC. The project is described in Volume

4 1, Section 4 of the EIS.

5 The purpose of this technical report is to describe baseline ambient air quality and potential 6 changes to air quality resulting from construction and operation of the Project. The specific 7 objectives of the Air Quality technical study were to:

8 9

13

Characterize the existing baseline air quality in terms of measured ambient air quality and emissions of CACs

- 10 Estimate emissions due to Site C construction and operation
- Predict changes to ambient air quality in the dam site area due to Site C construction
 - Discuss potential changes to ambient air quality during Site C operation

14 The information presented in this technical data report was used to evaluate the potential

15 effects of the Project on human health (See EIS Volume 4 Section 33 Human Health).

16 **Objectives and Scope**

17 Construction and operations of the Site C Clean Energy Project have the potential to

18 change local and regional air quality.

19 The Project components that are expected to be sources of emissions during construction

20 include the dam, generating station and spillways, quarried and excavated construction

21 materials, road and rail access and transmission line. Construction vehicles and equipment

22 would be sources of criteria air contaminants (CACs) from fossil fuel combustion and

fugitive dust. Clearing and burning vegetation and debris during construction would also

result in emissions of CACs and fugitive dust as would extraction of construction materials

from source areas. The greatest change to air quality due to Project construction is

anticipated to occur near the proposed dam although there would also be emissions of

27 CACs and fugitive dust from several construction material source areas.

28 During operations, there is potential for the Site C reservoir to influence the local air quality

29 during dry periods of the year when the reservoir water level is lower than normal. Dry

30 reservoir bottoms have been known to be sources of fugitive dust emissions when coupled

- 31 with a wind speed high enough to entrain the sediments into the air. However, wind erosion
- 32 from the exposed bottom of the proposed reservoir is estimated to be a small contributor to
- 33 air emissions for the Project given the reservoir configuration and steep reservoir banks,
- 34 and the small reservoir operating range. Other potential emission sources during operation
- are combustion emissions from maintenance vehicles and vessels. Emissions during
- 36 operations would be much lower than during construction.

- 1 The report is organized as follows: 2 1. The first section outlines ambient air quality guidelines and standards 3 2. The second sections details the methods used for emissions estimation and 4 dispersion modelling. 5 3. The third section describes baseline meteorology, air quality and emissions in the study area 6 7 4. The fourth section provides an inventory of Project specific emissions sources 8 for Construction and Operation. 9 The fifth section presents results of dispersion modelling. 1.1 Contaminants and Ambient Air Quality Criteria 10 11 This study focuses on criteria air contaminants (CACs i.e., contaminants for which there are 12 either ambient air quality objectives or Canada-wide standards), including particulate matter 13 (PM), nitrogen dioxide (NO₂), sulphur dioxide (SO₂) and carbon monoxide (CO). 14 Ambient air quality criteria are developed by environment and health authorities. These 15 criteria are based on scientific studies that consider the influence of the contaminant on such receptors as humans, wildlife, vegetation, as well as aesthetic qualities such as 16 17 visibility. British Columbia ambient air quality objectives and Canada-wide standards for 18 CACs (i.e., contaminants analyzed in this study) are listed in Table 1.1.1. These criteria 19 were used to provide context for baseline ambient air quality and for predicted changes in 20 ambient concentrations due to Project construction in the dam site area. 21 There are provincial ambient air quality objectives for all CACs except NO₂ and ozone. For 22 the purposes of this study, federal ambient air quality objectives were used in place of 23 provincial objectives for NO₂. Provincial ambient air quality objectives are divided into three 24 categories designated as Level A, B, and C with Level A being the most stringent. These 25 levels correspond roughly to federal levels as defined below: 26 • Level A is equivalent to the federal maximum desirable objective, which is a long-27 term goal for air quality and provides a basis for an anti-degradation policy for 28 unpolluted areas, and for continuing development of control technology. 29 Level B is equivalent to the federal maximum acceptable objective, which is • intended to provide adequate protection against effects on soil, water, vegetation, 30 materials, visibility, personal comfort and well-being. 31 32 Level C is equivalent to the federal maximum tolerable objective, which denotes • 33 time-based concentrations of air contaminants beyond which, due to a diminishing 34 margin of safety, appropriate action is required without delay to protect the health of the general public. 35
- Canada-wide standards have been developed for PM_{2.5} and ozone. Canada-wide standards are established by the Canadian Council of Ministers of the Environment as a step towards the long-term goal of minimizing risks to human health and the environment. They

- 1 represent a balance between the desire to achieve the best health and environmental
- 2 protection possible in the relative near-term and the feasibility and costs of reducing the
- 3 pollutant emissions that contribute to elevated ambient concentrations. (CCME 2006).

4 **Table 1.1.1 British Columbia ambient air quality objectives and Canada-wide standards for** 5 **criteria air contaminants**

		Objectives/Standards (µg/m³)			
Contaminant	Averaging Period	British Columbia			Canada-wide Standard
	-	Level A Level B Level C			
Total Suspended	24-hour	150	200	260	
Particulate	Annual	60	70	75	
Particulate Matter	24-hour		50		_
less than 10 μm (PM ₁₀)	Annual				
Particulate Matter	24-hour	25 ^(a)			27 to 30 ^(b)
less than 2.5 μm (PM _{2.5})	Annual	8 ^(c)			8.8 to 10 ^(d)
Dustfall ^(e)	24-Hour	1.75 mg/dm ² -d residential, 2.9 mg/dm ² -d non- residential			_
	1-hour	_	400	1,000	
Nitrogen Dioxide ^(f)	24-hour	—	200	300	_
	Annual	60	100	_	
	1-hour	450	900	900-1,300	
Sulphur Dioxide	24-hour	160	260	360	
	Annual	25	50	80	
Carbon Monoxide	1-hour	14,300	28,000	35,000	
	8-hour	5,500	11,000	14,300	
Ozone	8-hour				65 ppb ^(g)

6 NOTES:

7 Source: BCMOE 2009b, CCME 2006

8 ^a Compliance based on annual 98th percentile value

 $\begin{array}{l} 9 \\ 10 \end{array} \ ^{b} \ \text{Current objective of 30 } \mu\text{g/m}^{3} \ \text{is proposed to change to 28 } \mu\text{g/m}^{3} \ \text{in 2015 and 27 } \mu\text{g/m}^{3} \ \text{in 2020; compliance based on annual 98}^{th} \ \text{percentile value, averaged over three consecutive years } \end{array}$

11 $\,^{\circ}\,\text{BC}$ also has a planning goal for annual $\text{PM}_{\text{2.5}}$ of 6 $\mu\text{g/m}^3$

14 ^e 24-hour average based on 30-day sample

15 ^f BC does not have ambient air quality objectives for NO₂ and, therefore, the federal maximum acceptable (Level A), desirable

16 (Level B) and tolerable (Level C) objectives are presented

17 ^g Compliance based on 4th highest annual value, averaged over three consecutive years

18

19 Particulate matter is often defined in terms of size fractions. Dustfall refers to the amount of

20 particulate matter of all size classes that settles onto the ground or other collection surfaces

in a given amount of time. It is a measure of the amount of particulate present in the

22 ambient air that is deposited on the ground. Particles less than 40 µm in diameter typically

- 1 remain suspended in the air for some time, and are referred to as total suspended
- 2 particulate (TSP). Suspended particulate matter less than 10 µm in diameter is termed PM₁₀
- 3 and particulate matter less than 2.5 µm in diameter is termed PM_{2.5}. Exposure to particulate
- 4 matter aggravates a number of respiratory illnesses (BCLA 2005). Smaller particles are
- 5 generally thought to be of greater concern to human health than larger particles (Wichers
- 6 Stanek et al. 2010).
- 7 Oxides of nitrogen (NO_x), comprised of nitric oxide (NO) and nitrogen dioxide (NO_2), are
- 8 produced when fossil fuels are burned at high temperatures. Nitrogen dioxide can combine
- 9 with other air contaminants to form fine particulates, which can reduce visibility. It can be
- 10 further oxidized to form nitric acid, a component of acid rain. Nitrogen dioxide also plays a
- 11 major role in the secondary formation of ozone. In humans, NO₂ acts as an irritant affecting
- 12 the mucous membranes of the eyes, nose, throat, and respiratory tract. Continued
- 13 exposure to NO₂ can irritate the lungs and lower resistance to respiratory infection,
- 14 especially for people with pre-existing asthma and bronchitis (BCLA 2005).
- 15 Sulphur oxides (SO_x) are produced mostly in the form of SO₂ by the combustion of fossil
- 16 fuels containing sulphur. Sulphur dioxide reacts in the atmosphere to form sulphuric acid, a
- 17 major contributor to acid rain, and particulate sulphates, which can reduce visibility. Sulphur
- 18 dioxide is irritating to the lungs at elevated levels and is frequently described as smelling of
- 19 burning sulphur (e.g., a struck match).
- 20 Carbon monoxide (CO) is produced by incomplete combustion of fossil fuels. It is the most
- 21 widely distributed and commonly occurring air contaminant and derives primarily from motor
- 22 vehicle emissions. Space heating and commercial and industrial operations are also
- 23 contributors. Short-term health issues related to exposure to elevated levels of CO include
- 24 headache, dizziness, light-headedness and fainting.
- 25 Ozone is formed through a complex sequence of reactions of precursors in sunlight. Ozone
- is a strong oxidizer and can irritate the eyes, nose and throat and decrease athletic
- 27 performance at high levels.
- 28

1 2 METHODS

2 2.1 Study Area Boundaries

Two study areas were used for air quality: (a) a technical study area that encompassed all project components and (b) a dispersion modelling study area that focused on the dam site area. Due to its proximity to the City of Fort St. John, the dispersion modelling study area was defined to conduct additional analyses of predicting ambient concentrations due to estimated Project emissions.

8 2.1.1 Technical Study Area

9 The air quality technical study area is illustrated in Figure 2.1.1. The 138 km by 102 km 10 technical study area boundaries encompass the Project activity zone with a minimum of

11 five-kilometre buffer, including West Pine Quarry, as well as the City of Fort St. John and

12 the District of Taylor. This represents the area within which all Project emissions are

13 expected to occur. Emissions from all Project components during construction and

14 operations were estimated for the technical study area.

15 Subareas within the technical study area were defined around the construction materials

16 source areas (Wuthrich Quarry, West Pine Quarry, 85th Avenue Industrial Lands, Portage

17 Mountain Quarry and Del Rio Pit) and Hudson's Hope Shoreline Protection to further

18 characterize baseline settings and Project emissions in these areas. These subareas are

19 12 km by 12 km squares, specified to include a minimum five-kilometre buffer around each

20 Project component.

21 2.1.2 Dispersion Modelling Study Area

Dispersion modelling was conducted for the Site C dam and generating station site due to the site's proximity to the City of Fort St. John. The dispersion modelling study area illustrated in Figure 2.1.1, is a 26 km by 27 km rectangle specified to include a minimum five-kilometre buffer around the proposed dam site area, Wuthrich Quarry and Area E. The dispersion modelling study area was extended north to include the community of Charlie Lake and east to include the District of Taylor.

28 2.2 Review of Existing Data Sources

29 Baseline air quality conditions were determined from emission inventories and ambient air

30 quality data. Existing meteorological, terrain and land cover characterization data were

31 used as inputs to the dispersion model.

1 2.2.1 Emissions Data Sources

2 Emission estimates of PM, NO_x, SO_x, and CO were obtained from the BC Ministry of

3 Environment (BCMOE 2012a) for area and mobile sources. Emissions from point sources

4 were determined from Environment Canada's National Pollutant Release Inventory

5 (Environment Canada 2012). Existing emissions were determined for the technical study

area, the dispersion modelling study area and for 12 km by 12 km areas around the

7 construction material sources (Wuthrich Quarry, West Pine Quarry, 85th Avenue Industrial

8 Lands, Portage Mountain Quarry and Del Rio Pit) and Hudson's Hope Shoreline Protection.

9

2.2.2 Ambient Air Quality Data Sources

10 The BCMOE operates a network of ambient air quality monitoring stations in the province

11 (BCMOE 2012b). The closest ambient air quality monitoring stations to the dispersion

modelling study area, shown in Figure 2.2.1, are the Fort St. John North Peace Cultural

13 Centre, Taylor Townsite, Taylor South Hill, Pine River Gas Plant, and Pine River Hasler.

14 The ambient air quality monitoring stations at Fort St. John and Taylor provide information

15 for PM₁₀, PM_{2.5}, NO₂, SO₂ and ozone, as shown in Table 2.2.1. The two Pine River stations

16 are furthest from the Project and the Peace River Valley and they measure only SO₂. Since

17 SO₂ is measured by the two Taylor stations, data from the two Pine River stations are not

18 representative of the Project study area and were not included in the baseline study.

The BCMOE ambient air guality monitoring database has no record of monitoring data for 19 20 either TSP or dustfall in or near the dispersion modelling study area. Dustfall monitoring 21 data collected near mine sites and reported to the BCMOE as conditions of the mine site air 22 quality permits were obtained from the Environmental Assessment Office and analyzed for 23 the baseline study. Existing mine sites in the vicinity of the Project area for which dustfall 24 data were available are the Brule, Dillon and Willow Creek coal mines. Closed mines in the 25 Project area are the Quintette and Bullmoose mines, which ceased operations in 2000 and 26 2003, respectively.

27 To characterize baseline air quality in the technical study area, additional data from

28 Beaverlodge and Grand Prairie, located roughly 130 to 180 km southeast of the Project,

29 were downloaded from the Clean Air Strategic Alliance Data Warehouse (2012) to provide

30 information on background carbon monoxide concentrations and additional reference points

31 for nitrogen dioxide and ozone. Furthermore, field studies were conducted to collect

32 additional PM data as discussed in Section 2.3.

Table 2.2.1 lists the stations, time periods, and pollutants included in the baseline

34 characterization. Note that while some of the stations listed are located outside the

technical study area, it was prudent to include all data to ensure that all CACs are covered

in the baseline study, and to ensure that the limited data from within the technical study

area are reasonable and representative of general baseline conditions.

Station	Pollutant	Time Period		
Fort St. John North Peace	PM _{2.5}	March 2001 to April 2003		
Cultural Centre	PM ₁₀	March 2001 to January 2012		
	NO ₂	January 2000 to January 2002		
Taylor Townsite	SO ₂	January 2000 to January 2012		
	O ₃	January 2000 to January 2002		
Taylor South Hill	SO ₂	January 2000 to January 2012		
Beaverlodge	NO ₂	January 2000 to January 2012		
	NO ₂	February 2004 to January 2012		
Grand Prairie	со	February 2004 to January 2012		
	O ₃	February 2004 to January 2012		
Quintette and Bullmoose mines	Dustfall	1993 to 1996, 1998 to 2000		
Dillon Mine	Dustfall	February to April 2005, June to July 2005		
Willow Creek Mine	Dustfall	January 2005 to September 2009		

1 Table 2.2.1 Baseline ambient air quality monitoring data

2

3 Baseline air quality was characterized by analyzing time series plots and box plots of the data as described below. In addition, representative background concentrations for the 4 5 dispersion modelling study area were calculated. Since the main purpose of the time series is to highlight inter-annual trends and intra-annual variability, the hourly data were 6 7 smoothed by calculating thirty-day running medians centred on each hour. This removed 8 extreme spikes and diurnal variability and thereby improved the vertical scale. Box plots are 9 a simplified representation of the frequency distribution of data. These were chosen to present key percentiles that are well spread on the vertical axis: 2nd, 25th, 50th (median), 10 75th, and 98th percentiles. The narrow outer box spans the 2nd and 98th percentiles, the 11 smaller, wider box spans the 25th and 75th percentiles, and the line transecting the smaller 12 box indicates the 50th percentile or the median. When higher percentiles are selected, the 13 lower percentiles tend to be squeezed close to 0 and visually become very difficult to 14 15 compare. Box plots were generated for 1-hour and 24-hour averages since most contaminants have objectives for these averaging periods (8-hour averages for carbon 16 17 monoxide). Background concentrations were calculated following the Guidelines for Air 18 Quality Dispersion Modelling in British Columbia (BCMOE 2008).

19 2.2.3 Meteorological, Terrain and Land Cover Characterization Data Sources

- 20 Meteorological, terrain and land cover characterization data are required for dispersion
- 21 modelling. Meteorological data were obtained from the BCMOE station at Taylor Townsite

- 1 station and the Environment Canada station at Fort St. John Airport. Additional
- 2 meteorological data were collected from field studies as discussed in Section 2.3. Terrain
- 3 elevations and land cover characterization information were obtained from GeoBase as
- 4 discussed in Section 2.5.1.5 and Section 3.2.2 (http://www.geobase.ca).

5 2.3 Field Surveys

- 6 Two ambient air quality stations were installed to collect baseline particulate matter
- 7 measurements and provide ongoing monitoring during all phases of the Project. Since there
- 8 are ambient air quality objectives in British Columbia for both PM₁₀ and PM_{2.5}, and there is a
- 9 Canada-wide standard for PM_{2.5}, the two new stations were equipped to measure both
- 10 PM_{10} and $PM_{2.5}$.
- 11 The Attachie Flat station (STC1) was installed in January 2011 and the Old Fort station
- 12 (STC8) was installed in February 2011. Each station is equipped with two Thermo Scientific
- 13 5030 SHARP instruments to continuously measure PM_{2.5} and PM₁₀. The locations of these
- 14 stations are shown in Figure 2.2.1. The coordinates of the stations and measurement
- 15 periods are presented in Table 2.3.1. Data from January to March 2011 at the Attachie Flat
- 16 station were invalid due to instrument malfunctions and were therefore excluded from the
- 17 analysis for baseline characterization.

	Location		Measurement Period	
Station	UTM NAD 83 (m)	Туре		
Station 1 – Attachie Flat	597983 Easting	Air	January 15, 2011 to	
Upper Terrace	6232938 Northing Quality		present	
Otation 0. Old Fast	634890 Easting	Air	Marsh 4, 0044 to an east	
Station 8 – Old Fort	6230532 Northing	Quality	March 1, 2011 to present	

18 Table 2.3.1 Project ambient air quality monitoring station details

19

20 A meteorological monitoring network was installed between October 2010 and January

21 2011 to observe the baseline microclimate of the Peace River Valley (Volume 2 Appendix

22 K). The network comprises six meteorological stations located between Taylor and

- Hudson's Hope and includes: three stations in Attachie Flat at different elevations (Lower
- 24 Terrace, Upper Terrace and Plateau) and three stations located on the upper terrace along
- the Peace River (Hudson's Hope, Bear Flat and on a terrace overlooking the proposed Site
- C dam site). A wind station installed in Farrell Creek in March 2009 is also contained within
- the network and continues to collect wind speed and wind direction records. The locations

of these stations are illustrated in Figure 2.3.1. The coordinates of each station and the

29 measurement period are presented in Table 2.3.2. The data were used for the microclimate

- 1 technical study (Volume 2 Appendix K Microclimate Technical Data Report) and for the
- 2 dispersion modelling as outlined in Section 2.5.1.4.

Station	Location	Type	Measurement Period	
Station	UTM NAD 83 (m)	Туре	measurement renou	
STC1 – Attachie Flat	597983 Easting	Climate	lonuory 15, 2011 to procent	
Upper Terrace	6232938 Northing	Climate	January 15, 2011 to present	
STC2 – Attachie Flat	597721 Easting	Climate	January 13, 2011 to present	
Lower Terrace	6231898 Northing	Climate	January 13, 2011 to present	
STC3 – Attachie	595065 Easting	Climate	November 4, 2010 to present	
Plateau	6233032 Northing	Climate	November 4, 2010 to present	
STC4 – Bear Flat	610669 Easting	Climate	December 1, 2010 to present	
	6238135 Northing	Climate	December 1, 2010 to present	
STC5 – Hudson's Hope	570577 Easting	Climate	December 12, 2010 to present	
STCS - Huuson's Hope	6213303 Northing	Climate	December 12, 2010 to present	
STC6 – Farrell Creek	580779 Easting	Wind	April 1, 2009 to present	
	6220238 Northing	vviria		
STC7 – Site C Dam	629517 Easting	Climate	November 27, 2010 to present	
	6230875 Northing	Cimale		

3 Table 2.3.2 Project climate station details

4 Standard data checks were performed regularly on all field data collected. Data were

5 checked for missing data and anomalies in order to ensure any instrument malfunctions

6 were detected and corrected as soon as possible.

7 2.4 Emission Estimation

8 Project emissions were estimated for every year of the expected eight-year construction 9 period. The emission inventory was subdivided by project components (i.e., Site C dam site construction, construction material source areas, transmission line, and roads) and by study 10 area. Emissions associated with construction of Hudson's Hope Shoreline Protection are 11 12 included in the roads component. Emissions associated with clearing activities were not 13 included in the subtotals for each project component as clearing activities would occur at 14 more than one construction area. More details on the emissions from clearing activities are 15 presented in Section 4.1.11. The scope of the emission inventory included the following 16 emission sources, where applicable:

- Clearing activities
- Prescribed burning and incineration of clearing debris
- Extraction, processing, movement and placement of construction and waste
 materials

- 1 Drilling
- 2 Explosives detonation and blasting
- 3 Material handling and transfers
- 4 Concrete batch plant operations
- 5 Material processing
- 6 Stockpile wind erosion
- 7 Grading and scraping
- 8 Fugitive emissions of road dust on paved and unpaved roads
- 9 Mobile vehicle exhaust
- 10 Diesel-fuelled equipment and generators
- 11 Boats
- 12 Aircraft
- 13 Asphalt production

Project emissions were estimated using emission factors obtained primarily from the United States Environmental Protection Agency (US EPA) AP-42 *Compilation of Air Pollutant Emission Factors* (www.epa.gov/ttnchie1/ap42/). The following subsections explain the methodology used to estimate emissions. Detailed information on emission estimates is

18 provided in Appendix A.

19**2.4.1** Prescribed Burning and Incineration

Clearing of wood and other vegetation would be required for construction of the Project. A portion of waste wood may be disposed of through prescribed burning and incineration of wood slash at various locations within the Project activity zone.

- 23 Emission factors for TSP, PM_{10} , $PM_{2.5}$ and CO from prescribed burning of logging slash
- debris were obtained from Section 13.1 *Wildfires and Prescribed Burning* of AP-42 (US
- 25 EPA 1996). Emissions factors for NO_x from prescribed burning of forest residues were
- obtained from Section 2.5 on Open Burning of AP-42 (US EPA 1992). Emission factors for
- SO_x were obtained from *Criteria Air Contaminants Emissions Inventory 2002 Guidebook* (Environment Canada 2006) for prescribed burning. Emissions from prescribed burning
- 29 were calculated as follows:
- 30 $E_{TSP} = 6.0 \, kg / tonne_{woodresidue}$
- 31 $E_{PM10} = 4.0 \, kg / tonne_{woodresidue}$
- 32 $E_{PM 2.5} = 4.0 \, kg / tonne_{woodresidue}$
- 33 $E_{NOx} = 2.0 \, kg / tonne_{woodresidue}$
- 34 $E_{SOx} = 0.037 \, kg/tonne_{woodresidue}$

1 $E_{CO} = 37 \, kg / tonne_{woodresidue}$

² Emission factors for incineration were obtained from *Criteria Air Contaminants Emissions*

Inventory 2002 Guidebook (Environment Canada 2006). Emissions from wood waste
 incineration were calculated as follows:

5
$$E_{TSP} = 2.9010 \, kg/tonne_{woodresidue}$$

- 6 $E_{PM10} = 1.5956 \, kg/tonne_{woodresidue}$
- 7 $E_{PM2.5} = 1.1604 \, kg/tonne_{woodresidue}$
- 8 $E_{NOx} = 0.50 \, kg / tonne_{woodresidue}$
- 9 $E_{SOx} = 0.050 \, kg / tonne_{woodresidue}$
- 10 $E_{co} = 65 \, kg / tonne_{woodresidue}$

11 **2.4.2 Bulldozing**

12 Emission factors for TSP, PM₁₀ and PM_{2.5} from bulldozing of overburden were obtained

- 13 from Section 11.9 Western Surface Coal Mining of AP-42 (US EPA 1998). Emissions were
- 14 calculated as follows:

15
$$E_{TSP} = \frac{2.6(s)^{1.2}}{M^{1.3}} kg/hour \cdot unit$$

16
$$E_{PM10} = 0.75 \times \frac{0.45(s)^{1.5}}{M^{1.4}} kg/hour \cdot unit$$

17
$$E_{PM 2.5} = 0.105 \times E_{TSP} = \frac{0.273(s)^{1.2}}{M^{1.3}} kg/hour \cdot unit$$

- 18 where:
- 19 s = material silt content (%)
- 20 M = material moisture content (%)

21 **2.4.3 Drilling**

22 The emission factor for TSP from drilling operations was obtained from Section 11.9

23 Western Surface Coal Mining of AP-42 (US EPA 1998). Emission factors for PM₁₀ and

24 PM_{2.5} are not provided for drilling activities; therefore, the aerodynamic particle size

25 multipliers for aggregate handling contained in Section 13.2.4 *Aggregate Handling and*

26 Storage Piles of AP-42 (US EPA 2006a), reproduced in Table 2.4.1, were used to convert

27 TSP emissions to emissions of the smaller PM size fractions.

1 Table 2.4.1 PM _{2.5} and PM ₁₀ size fraction n	multipliers
--	-------------

	Aerodynamic Particle Size Multiplier			
Size Fraction	Less than 2.5 microns	Less than 10 microns	Less than 30 microns	
Multiplier as a ratio of total dustfall	0.053	0.35	0.74	
Multiplier as a ratio of TSP	0.072	0.47	1.0	

2 NOTES:

3 Source: US EPA, 2006

4 Emissions of TSP, PM₁₀ and PM_{2.5} were calculated as follows:

5
$$E_{TSP} = 0.59 \, kg/hole$$

6
$$E_{PM10} = 0.47 \times E_{TSP} = 0.28 kg/hole$$

7
$$E_{PM2.5} = 0.072 \times E_{TSP} = 0.042 kg/hole$$

8 2.4.4 Explosives Detonation

9 Explosives would be used for blasting at quarries and the Site C dam site. For Wuthrich
 10 Quarry, West Pine Quarry, and Site C dam site earthworks, emissions factors for CO, NO_x
 11 and SO_x from detonation of ammonium nitrate with fuel oil (ANFO) were obtained from

- 12 Section 13.3 *Explosives Detonation* of AP-42 (US EPA 1980). Emissions were calculated
- 13 as follows:
- 14 $E_{NOx} = 8.0 \, kg / tonne_{ANFO}$
- 15 $E_{SOx} = 1.0 \, kg / tonne_{ANFO}$
- 16 $E_{CO} = 34 kg / tonne_{ANFO}$

17 Dynamite used for tunnelling would be gelatin. Emission factors for CO, NO_x and SO_x were

obtained from Section 13.3 of AP-42 (US EPA 1980) for detonation of gelatin dynamite

19 used for tunnelling activities. Emissions were calculated as follows:

- 20 $E_{NOx} = 26 kg/tonne_{Dynamite(Gelatin)}$
- 21 $E_{SOx} = 1.0 kg/tonne_{Dynamite(Gelatin)}$
- 22 $E_{co} = 52 kg / tonne_{Dynamite(Gelatin)}$

23 Tunnel blasting would occur according to the Project schedule in Volume 1, Section 4.3;

annual mass of dynamite used for tunnelling construction was scaled based on the Projectschedule.

November 2012 Project No. 0920007A

1 **2.4.5 Blasting**

- 2 Emission factors for TSP, PM₁₀ and PM_{2.5} from blasting activities were obtained from
- 3 Section 11.9 Western Surface Coal Mining of AP-42 (US EPA 1998). Emissions were
- 4 calculated as follows:

5
$$E_{TSP} = 0.00022(A)^{1.5} kg/blast$$

6
$$E_{PM10} = 0.52 \times E_{TSP} = 0.52 \times 0.00022(A)^{1.5} kg/blast$$

7
$$E_{PM2.5} = 0.03 \times E_{TSP} = 0.03 \times 0.00022(A)^{1.5} kg/blast$$

8 where:

9

- 10 These emission estimates apply to blasting activities at quarries and the Site C dam.
- 11 2.4.6 Material Handling
- 12 Material handling activities that would occur during road and dam construction include:
- 13 loading and unloading of granular material using shovels, front-end loaders and haul trucks;
- 14 and stockpiling of gravel, silt and till.
- 15 Emission factors for PM_{2.5}, PM₁₀ and TSP from material handling activities were obtained
- 16 from Section 13.2.4 Aggregate Handling and Storage Piles of AP-42 (US EPA 2006a).
- 17 Emissions were calculated as follows:

18
$$E_{TSP} = 0.74 \times (0.0016) \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} kg/tonne_{handled}$$

19 $E_{PM10} = 0.35 \times (0.0016) \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} kg/tonne_{handled}$
20 $E_{PM2.5} = 0.053 \times (0.0016) \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} kg/tonne_{handled}$

- 21 where:
- 22 U = mean wind speed (metres per second, m/s)

1 M = material moisture content (%)

2 Since emission estimates for material handling are dependent on the wind speed, hourly

- 3 wind speeds derived from the CALMET meteorological model (see Section 2.5.1) were
- 4 used in the calculations to provide a more realistic estimate of emissions than relying on
- 5 emissions based on maximum or average wind speeds. As a result, a variable emission file
- providing hourly wind-derived emissions was used in the dispersion modelling. The wind
 speeds were derived from the results of the CALMET model to ensure consistency between
- speeds were derived from the results of the CALMET model to ensure consistency betwee
 wind speed assumptions used for the emission estimates and dispersion calculations.

9 The mass of annual material handled at each location was estimated using the annual 10 volume of material and an assumed density. As till is composed of various fractions of cla

volume of material and an assumed density. As till is composed of various fractions of clay and gravel, the density of till material was assumed to be the average of wet and dry sand

and gravely, the density of the material was assumed to be the average of wet and dry sand 12 and clay (1,610 kg/m³), and the density of material from the dam site area was assumed to

12 and clay (1,010 kg/m), and the density of material norm the dam site area was assumed to 13 be the average of all gravel types (1,782 kg/m³) (SI Metric 2011) to represent an average till

- 14 density.
- 15 A control factor of 90% was applied for the processing of washed aggregate (AWMA 2000).
- 16 Although this control factor is used for controlling of fugitive dust through wet suppression
- 17 with chemicals, given the nature of washed aggregate where most of the silt is removed by
- 18 washing, applying a higher control efficiency would be more appropriate; however, the
- 19 control factor of 90% is more conservative and is most analogous to the washing of
- aggregate. A review of documents from the San Diego and the San Joaquin Valley Air
- 21 Pollution Control District (2012); County of San Diego Air Pollution Control District (1998)
- 22 indicates that emissions from washed aggregates are essentially zero. Therefore, the
- assumption of 90% control for the handling of washed aggregate provides a conservative
- estimate.

25 2.4.7 Conveyor Transfers

- 26 Emissions factors for TSP and PM₁₀ from conveyor transfers of granular material were
- 27 obtained from Section 11.19.2 *Crushed Stone Processing and Pulverized Mineral*
- 28 Processing of AP-42 (US EPA 2004a). Emissions were calculated for conveyor transfers
- 29 with no controls as follows:

$$30 \qquad E_{PM 2.5} = 0.072 \times E_{TSP} = 0.00011 kg/tonne_{transferred}$$

31
$$E_{PM10} = 0.00055 \, kg/tonne_{transferred}$$

- 32 $E_{TSP} = 0.0015 kg/tonne_{transferred}$
- The controlled emission factors obtained from Section 11.19.2 Crushed Stone Processing
- and Pulverized Mineral Processing of AP-42 (US EPA 2004a) were used to estimate
- ³⁵ emissions from conveyor transfers to reflect the moisture content of the material being

- handled. Emissions were calculated for conveyor transfers of wet material with moisture content greater than two percent as follows:
- 3 $E_{PM 2.5} = 0.0000065 kg/tonne_{transferred}$
- 4 $E_{PM10} = 0.000023 kg/tonne_{transferred}$
- 5 $E_{TSP} = 0.000070 \, kg / tonne_{transferred}$

6 2.4.8 Concrete Batch Plant Operations

- 7 Emissions factors for TSP and PM₁₀ for concrete batch plant operations were obtained from
- 8 Section 11.12 Concrete Batching of AP-42 (US EPA 2006b). Emission factors for
- 9 processes at the concrete batch plants used to estimate particulate emissions are
- 10 presented in Table 2.4.2. Emissions factors for PM_{2.5} were estimated by applying the
- 11 particle size multiplier in Table 2.4.1 to the PM_{10} emission factor.
- 12 Baghouses, which are used to control particulate matter emissions by filtration, would be
- 13 installed at the conventional concrete batch plant and roller-compacted concrete batch
- 14 plant. A control factor of 99% was applied to processes where a baghouse would be used
- 15 (AWMA 2000). A control factor of 90% was applied for the processing of wet or washed
- 16 aggregate (AWMA 2000), as noted in Section 2.4.6.

TSP \mathbf{PM}_{10} PM_{2.5} Units 0.0017 0.00026 Aggregate transfer 0.0035 kg/tonne_{aggregate} 0.0011 0.00051 Sand transfer 0.000077 kg/tonne_{sand} Pneumatic cement unloading to elevated silo 0.0005 0.00017 0.000026 kg/tonne_{cement} (controlled) Weigh hopper loading 0.0026 0.0013 0.00020 kg/tonne_{aggregate & sand} 0.0092 0.0028 0.00042 Mixer loading (central mix) (controlled) kg/tonne_{cement}

17 Table 2.4.2 Emission factors of concrete batch plant operations

18 **NOTES**:

19 Source: Section 11.12 AP-42 (US EPA 2006b).

20 2.4.9 Material Processing

21 The processing activities include a coarse screen (grizzly screen) at the construction

material source areas and the crushing of material at the Site C dam site and for road

construction. Quarried material is passed through a grizzly screen at each construction

24 material source area before being hauled to site. In the dam site area, aggregate is passed

through scalping screens at the breaker station before continuing to the rotary breaker.

26 Material used for road construction would be sorted and larger stones would be passed

27 through a crusher.

- 1 Emission factors for TSP and PM₁₀ from these processing activities were obtained from
- 2 Section 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing of AP-42
- 3 (US EPA 2004). The emission factor for TSP from the primary crusher was obtained from
- 4 the AWMA Air Pollution Engineering Manual (AWMA 2000). The particle size multipliers for
- 5 $PM_{2.5}$ and PM_{10} given in Table 2.4.1 were applied to the TSP emission factor, as necessary.
- 6 Emissions were calculated using the factors in Table 2.4.3. A control factor of 99% was
- 7 applied to crushing activities where a baghouse would be used (AWMA 2000). A control
- 8 factor of 90% was applied for the processing of wet or washed aggregate (AWMA 2000) at
- 9 grizzly screens.

	TSP	PM ₁₀	PM _{2.5}	Units
Grizzly Screen	0.0125	0.0043	0.00065	kg/tonne _{aggregate}
Grizzly Screen (controlled)	0.0011	0.00038	0.000025	kg/tonne _{aggregate}
Scalping Screen	0.0125	0.0043	0.00065	kg/tonne _{aggregate}
Crushing	0.0027	0.0012	0.00018	kg/tonne _{aggregate}

10 Table 2.4.3 Emission factors of material processing operations

11 2.4.10 Stockpile Wind Erosion

- 12 During periods of high winds, wind-blown dust can be a source of PM emissions.
- 13 Meteorological conditions, frequency and extent of pile disturbances, silt content, and
- 14 moisture levels are the most important factors in determining the magnitude of wind-blown
- 15 dust from stockpiles.
- 16 The size of riprap stockpiled on site would be sufficiently large and the silt content
- 17 sufficiently low that winds experienced at the Site C dam site would not be strong enough to
- 18 pick up and entrain dust particles from the stockpiles. Washed aggregate would have
- 19 negligible silt content that would result in fugitive dust emissions. Stockpiles of fine
- aggregates, till and sand have the potential for wind erosion and, therefore, emissions were
- 21 calculated for these sources.
- 22 Short-term (hourly) emissions of TSP, PM_{10} and $PM_{2.5}$ due to wind erosion from stockpiles
- 23 were estimated using the methodology published by the Western Regional Air Partnership
- (WRAP 2006). The method considers the frequency of wind speeds greater than 5.4 metresper second:

26
$$E_{TSP} = 0.00019 \times \left(\frac{s}{1.5}\right) \times \left(\frac{f}{15}\right) kg/day/m^2$$

where:

28

s = silt content of material (weight percent)

1 f = percentage of time the unobstructed wind speed is greater than 5.4 metres per 2 second at the mean pile height

3 Emissions of $PM_{2.5}$ and PM_{10} are based on the PM_{10}/TSP ratio of 0.5 and $PM_{2.5}/PM_{10}$ ratio

4 of 0.15 for windblown dust from active storage piles:

5
$$E_{PM10} = 0.5 \times E_{TSP} = 0.00010 \times \left(\frac{s}{1.5}\right) \times \left(\frac{f}{15}\right) kg/day/m^2$$

6
$$E_{PM2.5} = 0.15 \times E_{PM10} = 0.000014 \times \left(\frac{s}{1.5}\right) \times \left(\frac{f}{15}\right) kg/day/m^2$$

7 Wind speeds were obtained from CALMET for locations of stockpiles inside the dispersion

8 modelling study area. The percentage of time the unobstructed wind speed was predicted

9 to be greater than 5.4 metres per second ranged between 2.9 and 10.8 percent.

10 For stockpiles where moisture content and silt content were not known, a moisture content

of 2.1% and silt content of 3.9% were used, based on stone quarrying and processing

12 industry averages listed in Section 13.2.4 of AP-42 (US EPA 2006a).

13 A control efficiency of 90% was applied to aggregate stockpiles that are sprayed (WRAP

14 2006) and a control efficiency of 100% was applied to aggregate stockpiles that are washed

15 (San Joaquin Valley Air Pollution Control District 2012; County of San Diego Air Pollution

16 Control District 1998).

17 Annual emissions of TSP, PM₁₀ and PM_{2.5} due to wind erosion from stockpiles were also

18 estimated using the WRAP methodology (WRAP 2006). The method considers the

occurrence of precipitation as well as the frequency of wind speeds greater than 5.4 metresper second:

21
$$E_{TSP} = 0.00019 \times \left(\frac{S}{1.5}\right) \times \left(365 \times \frac{(365 - p)}{235}\right) \left(\frac{f}{15}\right) kg/year/m^2$$

22
$$E_{PM10} = 0.5 \times E_{TSP} = 0.00010 \times \left(\frac{S}{1.5}\right) \times \left(365 \times \frac{(365 - p)}{235}\right) \left(\frac{f}{15}\right) kg/year/m^2$$

23
$$E_{PM 2.5} = 0.15 \times E_{PM 10} = 0.000014 \times \left(\frac{S}{1.5}\right) \times \left(365 \times \frac{(365-p)}{235}\right) \left(\frac{f}{15}\right) kg/year/m^2$$

- 24 where:
- p = number of days per year with at least 0.0254 centimetres of precipitation
- s = silt content of material (weight percent)
- f = percentage of time the unobstructed wind speed is greater than 5.4 metres per
 second at the mean pile height

1 Using climate normal precipitation data for Fort St. John Airport, an average of 121 days 2 per year receive greater than 0.0254 centimetres of precipitation. 3 2.4.11 Grading and Scraping 4 Grading and scraping activities are expected to occur at construction material source areas, 5 road construction, transmission line, clearing and the Site C dam site. Emission factors for TSP, PM₁₀ and PM₂₅ were obtained from Section 11.9 Western Surface Coal Mining of AP-6 42 (US EPA 1998). Emissions from grading were calculated as follows: 7 $E_{TSP} = 0.0034 \times S^{2.5} kg/vehicle kilometre travelled$ 8 $E_{PM10} = 0.6 \times 0.0056 \times S^{2.0} kg/vehicle kilometre travelled$ 9 $E_{PM2.5} = 0.031 \times E_{TSP} = 0.0001054 \times S^{2.5} kg/vehicle kilometre travelled$ 10 11 where: 12 S = mean vehicle speed (in km/h) These equations were developed for grading activities at western surface coal mines; 13 however, AP-42 Section 13.2.3 Heavy Construction Operations recommends the use of 14 15 these emission factors for heavy construction operations (US EPA 1995). 16 The annual vehicle kilometres travelled were estimated based on the annual operating 17 hours of the graders and a mean vehicle speed. Values used fall within the normal range of 18 values found both in the literature and in measurements conducted by RWDI for other 19 facilities. For Site C dam site construction and construction material source areas, grader 20 operating hours were calculated from material processing rates and the annual volume or 21 mass of material handled. Grader operating hours for clearing, transmission line and road 22 infrastructure were provided by the Site C engineering team. The AP-42 geometric mean

vehicle speed of 11.4 km/h was assumed for calculation of PM emissions associated with

24 grading.

25 Emissions due to scraping were calculated as follows:

26 $E_{TSP} = 0.029 \, kg / tonne_{aggregate}$

Emission factors for PM₁₀ and PM_{2.5} are not provided for scraping activities; therefore, the aerodynamic particle size multipliers for aggregate handling contained in Table 2.4.1 were used to convert TSP emissions to emissions of the smaller PM size fractions. Emissions of PM₁₀ and PM_{2.5} were, therefore, calculated as follows:

- 31 $E_{PM10} = 0.473 \times E_{TSP} = 0.014 kg / tonne_{aggregate}$
- 32 $E_{PM 2.5} = 0.072 \times E_{TSP} = 0.0021 kg / tonne_{aggregate}$

1 The emission factors do not include a term for the moisture content of the material being

2 graded or scraped. A review of the background documents for Section 11.9 of AP-42 (US

3 EPA 1998) reveals that the emission factors were developed using a series of tests from a

4 single coal mine in Central North Dakota. Soil moisture data were not recorded as part of

5 the testing and, therefore, moisture was not included in the derivation of the equation.

6 Measurements collected at the dam site area and construction material source areas

7 indicate that the natural moisture content of the overburden material is between 8% and

8 18%. At this level, it can be expected that particulate emissions from grading and scraping

9 would be low.

10 In order to quantify a reduction in emissions relative to the factors provided in Section 11.9

of AP-42 (US EPA, 1998), the information provided in both Section 13.2.2 of AP-42

12 Unpaved Roads (US EPA 2006) and Section 13.2.4 of AP-42 Aggregate Handling and

13 Storage Piles (US EPA, 2006) were reviewed. These documents provide two methods for

14 estimating the control efficiency due to increased moisture levels. Both methods indicate

15 that a control efficiency of 80% would be conservative for natural moisture content values

16 higher than five percent. At a natural moisture content value of 18%, emissions would be

17 controlled by over 95%. Thus, as a conservative estimate, a value of 80% was used for

both grading and scraping where the natural moisture content is greater than 5%.

19 2.4.12 Unpaved Roads

20 Haul trucks operate on unpaved roads on site, resulting in the re-suspension of road dust 21 particles. The magnitude of road dust emissions is dependent on vehicle weight and the 22 surface material silt content. Although not explicitly stated in the equation, road surface 23 moisture (whether via precipitation or dust control activities) also affects the magnitude of 24 the emissions. Heavy vehicles and high surface material silt content would increase the 25 magnitude of emissions, while surface moisture content would decrease the magnitude of emissions. Emissions of $PM_{2.5}$, PM_{10} and TSP from vehicle traffic on unpaved roads were 26 27 calculated following the method described in Section 13.2.2 Unpaved Roads of AP-42 (US 28 EPA 2006c). This method estimates particulate emissions from re-suspended road surface 29 materials; the equation does not include emissions from vehicle exhaust, brake wear and 30 tire wear.

31
$$E = k \left(\frac{s}{12}\right)^a \left(\frac{1.1W}{3}\right)^b$$

32 where:

- 33 E = emission factor in kilograms (kg) per vehicle-kilometres-travelled
- 34 k, a, b = empirical constants (Table 2.4.4)
- 35 s = surface material silt content (%)

1 W = mean vehicle weight (tonnes)

2 Table 2.4.4 Unpaved roads, empirical constants for emissions

	TSP	PM ₁₀	PM _{2.5}
k	1.4	0.42	0.042
а	0.70	0.90	0.90
b	0.45	0.45	0.45

3 NOTES:

4 Source: Modified from US EPA 2006c.

5 In calculating W (the average weight of vehicles travelling the road), an average vehicle

6 weight was calculated for each road segment. Emissions were estimated by road segment

7 and then summed.

8 On unpaved roads at construction material source areas, the dam site area and along the

9 reservoir, trucks would be fully loaded during trips to the construction sites and stockpiles,

10 and empty during return trips. The AP-42 default silt content of 8.3 per cent was used for

11 the haul road surface material.

12 To reduce re-suspension of road dust particles on unpaved roads, water trucks would apply

13 water to the haul roads as needed during the spring and summer. An average control

efficiency of 75% was assumed for year-round road dust control. The use of 75 per cent

15 control efficiency reflects an increase in the moisture content of the haul road surface to

16 roughly twice that of the natural moisture level, as a result of watering activities and natural

17 precipitation (US EPA 2006c).

18 All roads inside the dam site area and construction material source areas would be

19 unpaved. For vehicles used during clearing activities and vehicles that travel both at the

20 Site C dam site and the transmission line, half the vehicle distance travelled was estimated

21 to be on unpaved roads. All other vehicles on the transmission line and all road

infrastructure construction vehicles and vehicles-in-transit were assumed to travel only on
 paved roads.

24 Estimates of vehicle trip distances and total annual hours of operation are summarized in

Table 2.4.5. Trip distance estimates were used in estimating unpaved and paved roads

26 emissions as well as motor vehicle combustion emissions. Service vehicles at the Site C

27 dam site and generating equipment installation vehicles were assumed to travel one round-

trip per day for six days each week each year.

29

	Trip Distance (km)	Annual Hours of Operation
onstruction material source area vehicle	0.50	3,160
ffsite service vehicle	5.0	2,000
insite service vehicle	3.0	2,000
huttle buses	10.0	2,000

1 Table 2.4.5 Worker transport vehicle activity at construction material source areas and the

3 NOTES:

4 5 The above table is applicable to both paved and unpaved roads and is referred to both in the current section and Section 2.4.14.

2.4.13 Paved Roads 6

7 Emissions of TSP, PM₁₀ and PM_{2.5} from vehicle traffic on paved roads were calculated

using the methods of Section 13.2.1 Paved Roads of AP-42 (US EPA 2011). The paved 8

9 road emission factor equation reflects new studies that were undertaken by the US EPA

10 and accounts for only particulate emissions from re-suspended road surface materials; the

11 equation does not include emissions from vehicle exhaust, brake wear and tire wear.

12
$$E = k(sL)^{0.91} (W)^{1.02}$$

E = particulate emission factor (g/vehicle kilometres travelled VKT)13

14 k = particle size multiplier (Table 2.4.6)

W = average weight of all vehicle travelling the road (tonnes) 15

sL = silt loading (g/m²)16

17 Table 2.4.6 Paved roads, particle size multipliers

	TSP	PM ₁₀	PM _{2.5}	
k	3.23	0.62	0.15	

18 NOTES:

19 Source: US EPA 2011.

The baseline silt loading value for low volume roads (0.6 g/m²) from Section 13.2.1 Paved 20

21 Roads of AP-42 (US EPA 2011) was used for all paved road calculations. Although some

roads are not considered low volume, the silt loading of low volume roads would provide the 22

23 most conservative estimate, as silt loading on higher volume roads tends to be lower.

24

2.4.14 Motor Vehicle Combustion

25 Tailpipe exhaust emissions from highway motor vehicles were estimated for Project-related

26 traffic. This includes vehicles used for transport crews, equipment and supplies for

27 construction, as well as vehicles used for site inspections, waste removal, road watering,

28 and maintenance.

- 1 The standard approach for estimating vehicular emissions is to use computer simulation
- 2 techniques that are based on extensive previous testing of a wide range of vehicles. The
- 3 Motor Vehicle Emission Simulator (MOVES) model and MOBILE6.2 are two such models
- 4 that have been developed for this purpose by the US EPA. Implementation of MOVES in
- 5 Canada and the US began in March 2, 2010, and use of the model will be mandatory in the
- 6 US for transportation conformity analysis after March 2, 2013. MOBILE6.2 will be gradually
- phased out during this time. For this reason, and because it is an improved model, MOVES
 was used to estimate vehicle emissions for the Project. MOVES is the most current and
- was used to estimate vehicle emissions for the Project. MOVES is the most current and
- 9 most advanced emissions estimation tool available for motor vehicle exhausts, and is now
- 10 the regulatory model provided by the US EPA.
- 11 Climate information inputs required by MOVES include annual average barometric
- 12 pressure, maximum and minimum annual average ambient temperature and humidity.
- 13 Pressure, humidity and temperature data were obtained from 1971 to 2000 climate
- 14 normals, the most recent 30-year period for which Environment Canada has published
- 15 them, for the closest station to the proposed Site C dam site, which is Fort St. John Airport.
- 16 Vehicle age distribution data for BC were compiled by Stewart Brown Associates (2005).
- 17 Information inputs are summarized in Table 2.4.7.

Input Parameter*	Value Used	Notes
Ambient temperature	Min2.9℃ Max. 6.9℃	Source: Environment Canada 2012b
Relative Humidity	At 6am: 76.2% At 3pm: 54.6%	Source: Environment Canada 2012b
Barometric Pressure	93.1 kPa	Source: Environment Canada 2012b

18 Table 2.4.7 MOVES input parameter data sources

19 **NOTES**:

20 *Values are annual average.

21 Conditions that affect emission factors in MOVES include time of day, month, vehicle

22 source type, and vehicle speed. The MOVES model was executed for four scenarios

23 (morning, midday, evening and overnight) for January and July for each construction year.

24 Vehicles were classified and matched to a MOVES vehicle source type, such as passenger

- truck or single-unit, short-haul truck. Mean vehicle speeds were assumed to be equal to the
- 26 posted speed limit. As a conservative assumption, the maximum emission factor of each
- vehicle source type for the four times of day was used to estimate mobile emissions. The
- model does not provide emission factors for TSP and, therefore, TSP was assumed to be
- 29 equal to PM_{10} because particulate emissions from engine exhaust are expected to be less
- 30 than 10 microns in size.
- 31 Vehicle trip distances and total annual hours of operation are summarized in Table 2.4.5.
- 32 Service vehicles at the Site C dam site and generating equipment installation vehicles were
- assumed to travel one round-trip per day for six days each week each year.

1 **2.4.15 Diesel-Fuelled Equipment**

- 2 Exhaust emissions were calculated for diesel-fuelled non-road equipment such as
- 3 bulldozers, graders, excavators, loaders and generators. Emissions of TSP, PM₁₀, PM_{2.5},
- 4 NO_x and CO were calculated based on the methodology used in the US EPA NONROAD
- 5 model (US EPA 2004b). Emissions of SO_x were estimated based on a 15 parts per million
- 6 (ppm) sulphur content in non-road diesel per Canada's *Sulphur in Diesel Fuel Regulation*
- 7 implemented in 2010 (Environment Canada 2012c).
- 8 Emissions were calculated based on the equipment horsepower, load factor, model year
- 9 and hours of operation. Where information on equipment horsepower was unavailable, data
- 10 from typical equipment based on type, size and load were obtained from Caterpillar Inc. or
- 11 from other manufacturers for equipment not manufactured by Caterpillar Inc. Load factors
- 12 were obtained from the US EPA NONROAD model (US EPA 2004b). Equipment not
- 13 classified in NONROAD was assumed to have a load factor of 0.59, which represents the
- 14 highest load factor used for other equipment categories in the NONROAD model.
- 15 Equipment would be purchased new for the Project. As a conservative approach, after
- 16 consultation with the engineering team as to an appropriate vehicle age, the model year
- 17 was estimated to be 2010. Hours of operation were estimated from an hourly handling rate
- 18 and annual quantity of material handled.

19 2.4.16 Diesel Generators

Exhaust emissions for diesel generators were estimated following the same methodology for diesel-fuelled non-road equipment (see Section 2.4.15). Horsepower ratings were not available for diesel generators used for light towers; they were estimated based on equipment specifications from Magnum Power Products LLC (2012) for models MLT 4080 and MLT 4150, which were specified to have fuel consumptions similar to those expected

- 25 for Project light tower generators. Horsepower ratings for all other diesel generators were
- estimated based on provided kilowatt ratings assuming a generating efficiency of 80%. The
- 27 resulting horsepower ratings and associated fuel consumptions are detailed in Table 2.4.8.

Generator	Horsepower Rating	Fuel Consumption (L/h)
Light tower – Wuthrich Quarry	16	3.2
Light tower – West Pine Quarry	16	3.2
Light tower – tunneling	16	3.2
Light tower – RCC and CVC aggregate production	16	3.2
Light tower – CVC placing	16	3.2
Light tower – Portage Mountain Quarry	16	3.2
Generator 1 – RCC and CVC aggregate production	34	6.9
Generator 1 – RCC batching	34	6.9
Generator 1 – CVC batching	34	6.9
Generator – tunneling	50	10.8
Generator 2 – RCC and CVC aggregate production	101	21.5
Generator – Wuthrich Quarry	168	21.5
Generator – West Pine Quarry	168	21.5
Generator 2 – RCC batching	168	21.5
Generator 2 – CVC batching	168	21.5

1 Table 2.4.8 Diesel generator horsepower ratings and fuel consumption rates

2 2.4.17 Boats

3 Exhaust emissions were estimated for boats that would be used to transport crews during

4 clearing activities. Emissions factors for boats were obtained from the 2005 to 2006 BC

5 Ocean-Going Vessel Emissions Inventory Report (Chamber of Shipping 2007) using the

6 following equation:

7
$$E = P(EF)(LF)(T)$$

8 where:

9 E = emissions in grams per year (g/y)

- 10 EF = emission factor in grams of pollutant per kilowatt-hour of engine power (g/kWh) 11 shown in Table 2.4.9.
- 12 LF = load factor of boat
- 13 T = duration in hours (h) in particular mode of activity per year

Engine Type		Slow			Medium		Fast		
Fuel Type	HFO	MDO	MGO	HFO	MDO	MGO	HFO	MDO	MGO
PM ₁₀	0.98	0.46	0.26	1.05	0.48	0.26	1.05	0.48	0.26
PM _{2.5}	0.88	0.41	0.23	0.95	0.43	0.24	0.95	0.43	0.24
NO _X	18.10	17.00	17.00	14.00	13.20	13.20	12.70	12.00	12.00
SO _X	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20
СО	1.40	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10

1 Table 2.4.9 Power-based emission factors for main engine(s) in underway mode

2 NOTES:

3 HFO – heavy fuel oil

4 MDO – marine diesel oil

5 MGO – marine gas oil

6 Source: The Chamber of Shipping, 2007

7 As a conservative assumption, the load factor was assumed to be one (100 percent) for all

8 boats. Emissions of SO_x were estimated based on 15 ppm sulphur content in marine diesel,

9 which is consistent with amendments to Canada's Sulphur in Diesel Fuel Regulation

10 (Environment Canada 2012b) that came into effect in 2007. The duration in a particular

11 mode of activity for each vessel was estimated from an average speed of eight knots,

12 number of trips per year and the distance per trip.

13 Emissions of TSP were calculated from PM₁₀ emissions based on Particulate Matter

14 Speciation Profiles developed by California Emission Inventory and Reporting System

15 (CEIDARS 2009) for diesel fuel combustion.

16 **2.4.18 Aircraft**

17 Helicopter emissions were estimated using the Federal Aviation Administration Emissions

and Dispersion Modelling System (EDMS). This model is the industry standard for

19 estimating aircraft emissions. EDMS was developed in the mid-1980s as a complex source

20 microcomputer model to determine the change in air quality due to proposed airport

21 development projects. By choosing the closest airport to the Project (Fort St. John Airport),

22 EDMS determines the location in terms of latitude and longitude as well as the weather

23 information. EDMS uses the landing and take-off cycles of the corresponding helicopters

24 and estimates the total CO, NO_X and SO_X emissions. Emissions of TSP are not available in

the EDMS but can be estimated from a SO_x -to-TSP ratio of 2.8 provided by Environment

Canada (2006). Emissions of PM_{10} and $PM_{2.5}$ were estimated using the Particulate Matter

27 Speciation Profiles by CEIDARS (2009) for aircraft powered by jet fuel.

Assumptions were made on the helicopter type as there are limited models in the EDMS

- 29 database. Helicopters to be used for the Project were matched with similar units in the
- 30 EDMS database based on the helicopter type and engine horsepower. Emissions were not

estimated for helicopters used for emergencies because they are not scheduled Project
 construction activities.

3

2.4.19 Asphalt Production

4 Emissions from asphalt production include particulate matter from the combustion of waste

5 oil in the boiler, the waste oil-fired dryer, and load-out and storage silo filling of asphalt.

6 Emission factors for the load-out were obtained from Section 11.1 Hot Mix Asphalt Plants of

7 AP-42 (US EPA 2004c). Emissions from asphalt load-out were calculated as follows:

8 $E_{TSP} = 0.000091 + (0.00071)(-V)e^{((0.025)((1.8T+492)-20))} kg/tonne_{handled}$

9
$$E_{co} = (0.0028)(-V)e^{((0.025)(1.8T+492)-20)} kg/tonne_{handled}$$

10 where:

11 E = Asphalt load-out emission factor (kg/tonne of asphalt handled)

12 V = Asphalt Volatility (assumed to be 0.5 from Section 11.1 of AP-42)

- 13 T = Hot mix asphalt temperature (°C)
- 14 Emissions from asphalt silo filling were calculated as follows:

15
$$E_{TSP} = 0.00017 + (0.00053)(-V)e^{((0.025)((1.8T+492)-20))} kg/tonne_{handled}$$

16
$$E_{CO} = (0.0024)(-V)e^{((0.025)(1.8T+492)-20)} kg/tonne_{handled}$$

- 17 where:
- 18 E = Asphalt silo filling emission factor (kg/tonne of asphalt handled)
- 19 V = Asphalt Volatility (assumed to be 0.5 from Section 11.1 of AP-42)
- 20 T = Hot mix asphalt temperature (°C)

As a conservative assumption, emissions of PM_{10} and $PM_{2.5}$ were assumed to be equal to

22 TSP for asphalt load-out and silo filling.

23 The emission factors for the combustion of waste oil in boilers were obtained from Section

1.11 Waste Oil Combustion of AP-42 (US EPA 1996). Emissions were calculated as
 follows:

 $26 \qquad E_{TSP} = 7.7(A) kg / m_{WasteOil}^3$

27 $E_{PM10} = 6.1(A) kg/m_{WasteOil}^3$

28 $E_{PM 2.5} = E_{PM 10} = 6.1(A) kg/m_{WasteOil}^3$

- $E_{NOx} = 2.3 kg/m_{WasteOil}^3$ 1 $E_{SOx} = 18(S) kg/m_{WasteOil}^3$ 2 $E_{CO} = 0.60 kg/m_{WasteOil}^3$ 3 4 where: E = Combustion emission factor (kg/m³ of waste oil)5 6 A = Ash content in waste oil (assumed to be 0.65% from Section 1.11 of AP-42) S = Sulphur content in waste oil (assumed to be 0.50% from Section 1.11 of AP-42) 7 8 The heating value of waste oil was assumed to be 140,000 BTU/gal or 11 kWh/l of waste oil 9 (AGSolutions LLC 2012). Emission factors for the waste oil-fired dryer, which operates with a fabric filter, were obtained from Section 11.1 Hot Mix Asphalt Plants of AP-42 (US EPA 10 11 2004c). Emissions from the dryer were calculated as follows: $E_{TSP} = 0.017 \, kg/tonne_{Asphalt}$ 12 $E_{PM10} = 0.012 kg/tonne_{Asphalt}$ 13 $E_{PM 2.5} = 0.0081 kg/tonne_{Asphalt}$ 14 $E_{NOx} = 0.028 \, kg / tonne_{Asphalt}$ 15 $E_{SOx} = 0.029 \, kg / tonne_{Asphalt}$ 16 $E_{CO} = 0.065 \, kg / tonne_{Asphalt}$ 17 18 where: 19 E = Combustion emission factor (kg/m³ of waste oil)20 The PM_{2.5} emission factor for the waste oil-fired dryer was estimated using the ratio 21 between PM₁₀ and PM_{2.5} described in Section 11.1-4 of AP-42. 22 2.4.20 Clearing Activities 23 Clearing of vegetation would occur for all Project components. As part of clearing activities, 24 burning and incineration of waste vegetation would generate the most emissions for each 25 component. Emissions from other clearing activities, i.e., excluding burning and 26 incineration, are expected to be a small percentage of the total emissions for each Project 27 component and, therefore, are not expected to change the total emissions at the dam site
- area and the dispersion modelling study area.

1 **2.5 Dispersion Modelling**

- 2 Ambient concentrations of CACs and dustfall deposition rates were predicted for the
- 3 dispersion modelling study area. Dispersion modelling was conducted for a conservative
- 4 construction year based on predicted quantity of emissions and proximity of sources to
- 5 residences. Predicted concentrations of CACs and dustfall deposition rates were compared
- 6 to British Columbia ambient air quality objectives and Canada-wide standards, which are
- 7 listed in Table 1.1.1.
- 8 The dispersion modelling methodology is based on the *Guidelines for Air Quality Dispersion*
- 9 Modelling in BC (BCMOE 2008). A conceptual model plan for the dispersion modelling
- 10 study area was submitted to and agreed upon by the BCMOE (see Appendix B).
- 11 Terrain in the Peace River Valley is complex, resulting in complex wind flow patterns.
- 12 Therefore, a refined dispersion model, capable of simulating complex wind flow patterns
- 13 was selected: the CALPUFF model in full three-dimensional CALMET mode (Earth Tech
- 14 2000a, 2000b). This model, developed by the Atmospheric Studies Group, is accepted for
- 15 use by the BCMOE and US EPA, among other jurisdictions. CALMET is a meteorological
- 16 pre-processor that develops hourly three-dimensional meteorological fields of wind and
- 17 temperature used to drive pollutant transport within CALPUFF. CALPUFF is a multi-layer,
- 18 multi-species, non-steady-state puff dispersion model. It simulates the influences of time-
- 19 and space-varying meteorological conditions on pollutant transport, transformation and
- 20 deposition.
- All estimated emissions were included in the modelling except road dust and burning
- 22 vegetation due to clearing activities.
- 23 Fugitive road dust emissions were not modelled for several reasons. The standard emission
- factors for fugitive road dust are understood to be overly conservative, particularly for
- unpaved roads. The Desert Research Institute found that about 75% of the total emissions
- 26 estimated using these equations are released within two metres of the ground, and are
- 27 likely to be re-deposited on the ground within a few hundred metres of their release and
- therefore are not considered transportable. This is compounded by the fact that regulatory
- dispersion models do not tend to account for the almost immediate deposition of much of
- 30 the material. This is particularly true of the CALPUFF model, which does not have a proper
- 31 line-source algorithm for modelling roads. Analyses of ambient samples have also shown
- 32 that road dust makes up a smaller amount of particulate matter in the air than suggested by
- 33 the AP-42 equations (Desert Research Institute 2000). The estimation methodology has an
- inherent assumption that there is an infinite source of road material to be emitted.
- 35 Furthermore, these equations were developed based on a regression analysis of numerous
- 36 monitoring tests for free-flowing traffic at constant speeds on relatively level roads. The use
- of these equations for stop-and-go traffic or for roads with characteristics beyond the range
- 38 observed in the monitoring tests leads to increased uncertainty. For these reasons, road
- 39 dust emissions are not always included in dispersion modelling projects in British Columbia.

- 1 Burning of vegetation would occur at variable, unknown locations depending on need and
- 2 meteorology and, therefore, cannot reasonably be included in the dispersion model.
- 3 Burning would be conducted in accordance with applicable BC regulatory requirements
- 4 developed in consideration of human health receptors. As well, BC Hydro has developed a
- 5 draft smoke management plan for the Site C project which provides best management
- 6 practices (Silvicon 2012). Emissions from other clearing activities would be minimal, as
- 7 discussed in Section 2.4.20, and could not reasonably be quantified by location as required
- 8 for inclusion in the dispersion modelling.

9 **2.5.1 CALMET**

10 CALMET is the meteorological pre-processor for the CALPUFF model. Dispersion

- 11 modelling was applied using the full 3-D CALMET mode because it has the ability to
- 12 assimilate multiple meteorological stations and to simulate the changes in mixing height
- 13 and boundary layer mechanics that result from the variable land cover characterization and
- 14 terrain in the air quality dispersion modelling study area. This modelling approach also
- allows full use of the meteorological data collected for the Project as well as the prognostic
- 16 model output from the microclimate technical study. The following is a summary of
- 17 CALMET model inputs. More detailed information is provided in Appendix C.

18 **2.5.1.1 Model Period**

19 CALMET was run for a one-year period from January 17, 2011 to January 16, 2012. This

- 20 represents the period during which meteorological data from the Site C climate network
- 21 were collected.

22 2.5.1.2 Model Domain

The CALMET model domain was chosen to be a 40 km by 40 km area, encompassing the

24 26 km by 27 km dispersion modelling study area and allowing for several kilometres of

- buffer on all sides to avoid edge effects influencing dispersion at the boundaries of the
- study area. Horizontal domain resolution was set at 500 m. In the vertical direction, 10
- 27 layers were chosen, with the top of the layers set as 20, 40, 80, 160, 300, 600, 1000, 1500,
- 28 2200 and 3300 m above ground level.

29 2.5.1.3 Prognostic Meteorology

- 30 CALMET was initialized for the one-year model period using the Weather Research and
- 31 Forecasting model, which was executed as part of the microclimate technical study. The
- 32 Weather Research and Forecasting model run included inputs of North American Regional
- 33 Reanalysis meteorological data from the United States Geological Survey (National Centers
- 34 for Environmental Protection [NCEP] 2011) and high-resolution terrain data from the
- 35 Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
- 36 Elevation Model (ASTER GDEM 2011). Further information on the WRF modelling can be
- 37 found in Volume 2 Appendix K Microclimate Technical Data Report.

1 2.5.1.4 Surface Meteorology

2 Surface meteorological data collected from the Site C climate network operated by BC

- 3 Hydro were used in the CALMET model, supplemented by data from two additional stations
- 4 located in the model domain. Farrell Creek (STC 6) was excluded from the CALMET model
- 5 as it is located over 30 km west of the model domain and measures only wind speed and
- 6 wind direction which would affect only a small area in the immediate vicinity of the station in

the CALMET solution. A total of eight surface stations were used in the CALMET modelincluding:

- Attachie Flat Upper Terrace station (STC1) operated by BC Hydro
- Attachie Flat Lower Terrace station (STC2) operated by BC Hydro
- Attachie Plateau station (STC3) operated by BC Hydro
- Bear Flat station (STC4) operated by BC Hydro
- 13 Hudson's Hope station (STC5) operated by BC Hydro
- Site C Dam station (STC7) operated by BC Hydro
- 15 Fort St. John Airport station operated by Environment Canada
- 16 Taylor Townsite station operated by BCMOE
- 17 The locations of the surface climate and meteorological stations are shown in Figure 2.3.1.

18 **2.5.1.5** Terrain Elevation and Land Cover Characterization

- 19 The terrain elevation and land cover characterization information used as input into the
- 20 CALMET model were obtained from GeoBase (http://www.geobase.ca) and are discussed

21 in Section 3.2. Terrain elevations from GeoBase represent 1:50,000 scale Canadian Digital

- 22 Elevation Data.
- 23 Land cover characterization data from GeoBase represent the vectorized result of raster
- 24 thematic data originating from classified ortho-images from Agriculture and Agri-Food
- 25 Canada, Canada Center for Remote Sensing, and Canadian Forest Service.

26 2.5.1.6 Geophysical Parameters

- 27 The CALMET model requires gridded geophysical parameters including surface roughness
- length, albedo, Bowen ratio, soil heat flux, vegetation leaf area index, and anthropogenic
- 29 heat flux. To more accurately represent the seasonally dependent geophysical parameters
- 30 in the CALMET model, five seasons were specified:
- Season 1: Mid-summer with lush vegetation (July)
- Season 2: Autumn with cropland that has not yet been harvested (August to
 September)
- Season 3: Winter with freezing temperatures, no snow on ground (October)
- Season 4: Winter with sub-freezing temperatures, snow cover on ground (November to March)
- Season 5: Transitional spring with partially green short annuals (April to June)

- 1 All geophysical parameters were defined by land cover characterization type and seasonal
- 2 category based on CALMET defaults in combination with recommendations from recent
- 3 studies (Earth Tech 2000a; Zhang et al. 2002, 2003). A full listing of the geophysical
- 4 parameters is included in Appendix C.

5 2.5.1.7 Model Options and User Switches

- 6 In general, the diagnostic model options were chosen in accordance with the *Guidelines for*
- 7 Air Quality Dispersion Modelling in BC (BCMOE 2008) and other CALMET studies
- 8 performed with similar meteorological data. Features of note include:
- 9 The model was initialized using WRF prognostic meteorological model output at
 10 1-km resolution
- Surface observations were extrapolated upward. This was done using the option to
 invoke Monin-Obukhov similarity theory and to more accurately represent winds at
 lower levels in areas of complex terrain
- 14 A list of the CALMET model options used is provided in Appendix C.

15 **2.5.2 CALPUFF**

- 16 The CALMET output (a year of hourly three-dimensional meteorological fields) was used as
- 17 input to the CALPUFF dispersion model to predict the maximum expected CAC
- 18 concentrations and dustfall deposition rates resulting from estimated Project construction
- 19 emissions. To understand the contribution of various source types and to limit file size,
- 20 emissions sources were grouped into 19 model runs as summarized in Table 2.5.1. Results
- from each model run were then summed to determine the total contribution from all
- sources.

Emission Source	Location	CALPUFF Source Type (Point, Area or Volume)	Nature of Emissions (Constant or Variable	
Bulldozing	All	Area	Constant	
Drilling	Wuthrich and dam site area	Volume	Constant	
Explosives detonation	Wuthrich and dam site area	Volume	Constant	
Blasting	Wuthrich and dam site area	Volume	Constant	
	Dam site area (north)	Volume	Variable	
Material handling	Dam site area (south)	Volume	Variable	
	85 th Ave. Industrial Lands	Volume	Variable	
Conveyor transfers, concrete batching, and screening (grizzly)	All	Area	Constant	
Crushing	Dam site area	Volume	Constant	
Stockpile wind erosion	Dam site area and 85 th Ave. Industrial Lands	Area	Constant	
Grading	All	Area	Constant	
Scraping	All	Area	Constant	
	Wuthrich, Area E, and 85 th Ave. Industrial Lands	Area	Constant	
	Dam site area	Volume	Constant	
Mobile vehicles	Area E to dam site area	Volume	Constant	
	Wuthrich to dam site area	Volume	Constant	
	Fort St. John to dam site area	Volume	Constant	
Generators	All	Point	Constant	
Other diesel equipment	All	Area	Constant	

1 Table 2.5.1 Description of CALPUFF model runs

2

3 2.5.2.1 Model Domain

4 The CALPUFF model domain within which CAC concentrations and dustfall deposition

5 rates are predicted is the 26 km by 27 km dispersion modelling study area described in

6 Section 2.1.2. The Universal Transverse Mercator (UTM) coordinates of the domain

7 vertices are given in Table 2.5.2. Puff transport and dispersion is computed within the

8 CALPUFF model for the entire CALMET model domain (see Section 2.5.1.2). Model

9 predictions are reported at discrete receptor locations within the dispersion modelling study

10 area.

Domain Vertex	UTM Easting (km)	UTM Northing (km)
Southwest	621.900	6,218.700
Northwest	621.900	6,245.700
Southeast	647.900	6,218.700
Northeast	647.900	6,245.700

1 Table 2.5.2 UTM Coordinates of CALPUFF model domain

2 **NOTES**:

3 All coordinates are for North American datum 83 grid zone 12.

4 2.5.2.2 Receptor Locations

5 In the CALPUFF model, a discrete set of receptor points are specified at which pollutant

- 6 concentrations are predicted. A Cartesian nested grid of receptors was defined within the
- 7 model domain, as per Guidelines for Air Quality Dispersion Modelling in British Columbia

8 (BCMOE 2008). Receptor spacing for the Cartesian grid is as follows:

9	•	20-m spacing along the construction boundaries for Area E, Wuthrich, 85 th Ave.
10		Industrial Lands, and the dam site area.
11	•	50-m spacing up to 500 m from the construction boundaries

- 250-m spacing up to 500 m from the construction boundaries
 250-m spacing up to 2 km from the construction boundaries
- 500-m spacing up to 2 km from the construction boundaries
 500-m spacing up to 4 km from the construction boundaries
- 1,000-m spacing in the remainder of the 26 km by 27 km model domain

To ensure maximum concentrations near populated areas were captured, a fine receptor grid with 100 metre spacing was defined over Fort St. John and Taylor. In addition, a

16 grid with 100 metre spacing was defined over Fort St. John and Taylor. In addition, a

- number of special receptors were defined at the worker camps, schools, child care facilities,
 health care facilities, senior care facilities and private buildings. Some nearby private
- health care facilities, senior care facilities and private buildings. Some nearby private
 buildings were ground-truthed to determine whether or not they were inhabited residences.
- Lists of these special receptors are provided in Appendix D. Receptor locations are shown
- in Figure 2.5.1. Note that several of the identified residences and non-residences are
- located within the proposed dam site area where construction activities are expected to
- 23 occur, and therefore, these receptors are located within or very close to modelled emission
- 24 sources. Model predictions at these receptors may be unrealistic.
- 25 Terrain elevations for all receptors required as input to the CALPUFF model were extracted

from 1:50,000 scale Canadian Digital Elevation Data obtained from GeoBase, as used in

- 27 CALMET.
- 28 Within the construction boundary of the dam site area, a separate receptor grid with 250
- 29 metre spacing was defined to predict pollutant concentrations for the purposes of the
- 30 terrestrial wildlife assessment.

1 **2.5.2.3** Technical Dispersion Options

2 All technical options relating to the CALPUFF dispersion model were set according to the

3 Guidelines for Air Quality Dispersion Modelling in BC (BCMOE 2008) or to model defaults.

- 4 These include parameters and options such as the calculation of plume dispersion
- 5 coefficients, the plume path coefficients used for terrain adjustments, exponents for the
- 6 wind speed profile, and wind speed categories. A list of the technical options is shown in
- 7 Table 2.5.3.

Parameter	Default	Project	Comments
MGAUSS	1	1	Gaussian distribution used in near field
MCTADJ	3	3	Partial plume path terrain adjustment
MCTSG	0	0	Sub-grid scale complex terrain not modelled
MSLUG	0	0	Near-field puffs not modelled as elongated
MTRANS	1	1	Transitional plume rise modelled
MTIP	1	1	Stack tip downwash used
MBDW	1	2	Not used since building downwash not modelled
MSHEAR	0	0	Vertical wind shear not modelled
MSPLIT	0	0	Puffs are not split
MCHEM	1	0	Chemical transformation not modelled
MAQCHEM	0	0	Aqueous phase transformation not modelled
MWET	1	1	Wet removal modelled for all sources
MDRY	1	1	Dry deposition modelled for all sources
MDISP	3	2	Near-field dispersion coefficients internally calculated from sigma-v, sigma-w using micrometeorological variables as recommended by guidelines
MTURBVW	3	3	Not used since MDISP = 2
MDISP2	3	2	Not used since MDISP = 2
MROUGH	0	0	PG sigma-y, sigma-z not adjusted for roughness
MPARTL	1	1	No partial plume penetration of elevated inversion
MTINV	0	0	Strength of temperature inversion computed from default gradients

8 Table 2.5.3 CALPUFF model switch settings

Volume 2 Appendix L Air Quality Technical Data Report

Parameter	Default	Project	Comments
MPDF	0	1	PDF used for dispersion under convective conditions as recommended for MDISP = 2
MSGTIBL	0	0	Sub-grid TIBL module not used for shoreline
MBCON	0	0	Boundary concentration conditions not modelled
MFOG	0	0	Do not configure for FOG model output
MREG	1	0	Do not test options specified to see if they conform to United States Environmental Protection Agency regulatory values

1 2.5.2.4 Point Source Parameters

2 Emissions from diesel generators were modelled as point sources. Stack parameters

3 including stack height, stack diameter, exit velocity, and exit temperature, as summarized in

4 Table 2.5.4 were estimated based on manufacturer specifications for similar equipment.

5 Table 2.5.4 Point source stack parameters for diesel generators

Parameter	Value
Stack height	1.0 m
Stack diameter	0.04 m
Exit velocity	30 m/s
Exit temperature	437 °C

6 2.5.2.5 Volume Source Parameters

7 Emissions from drilling, blasting (including explosives detonation), material handling, and

8 crushing were modelled as volume sources. Locations of these volume sources were

- 9 determined from maps provided by BC Hydro showing proposed locations of various
- 10 activities. Vehicle exhaust emissions that occur along defined roads were also specified as
- 11 series of volume sources located 16 m apart. Volume source emission parameters
- 12 specified as input to CALPUFF are shown in Table 2.5.5. Release heights were estimated
- 13 based on manufacturer specifications of typical equipment used for each activity. Initial
- 14 plume sigmas were chosen to reflect the size of dust clouds or exhaust plumes expected
- 15 from each activity.

Source Type	Release Height (m)	Initial Horizontal Plume Sigma (m)	Initial Vertical Plume Sigma (m)		
Drilling	2.0	2.0	2.0		
Blasting (including explosives detonation)	0.0	2.0	2.0		
Material handling	4.0 or 4.8	0.7	0.5 or 2.4		
Crushing	8.0	2.0	2.0		
Mobile vehicles	2.0	1.0	1.0		

1 Table 2.5.5 Volume source emission parameters

2

3 Emissions from material handling vary with time, depending on wind speed. Time-varying

4 emissions were estimated for each hour of the model period and incorporated through use

5 of the option for an external VOLEMARB.DAT file for arbitrarily varying volume emissions.

6 2.5.2.6 Area Source Parameters

7 Emissions from bulldozing, conveyor transfers, concrete batching, screening, grading,

8 scraping, and diesel equipment (except generators) were modelled as area sources. These

9 sources refer to activities and processes that occur over a large area rather than at a

10 defined location. Similarly, mobile vehicle emissions at Wuthrich, Area E and 85th Ave.

11 Industrial Lands were modelled as area sources as road locations have not yet been

12 specified within these areas. Source parameters, summarized in Table 2.5.6, reflect the

13 height and thickness of dust or exhaust plumes expected from each activity.

Source Type	Source Height (m)	Initial Vertical Plume Sigma (m)
Bulldozing	0.0	2.0
Conveyor transfers	3.0	2.0
Concrete batching	3.0	2.0
Screening	3.0	2.0
Grading	0.0	2.0
Scraping	0.0	2.0
Diesel equipment	0.75	0.75
Mobile vehicles	2.0	1.0

14	Table 2.5.6	Area source emission parameters

15 **2.5.2.7** Wet and Dry Deposition

16 Calculation of wet and dry deposition of particulate matter was enabled for all sources to

17 predict dustfall deposition in the model domain and to estimate the concentrations of

- 18 suspended particulate matter with more accuracy. Due to the lack of information on
- 19 geophysical parameters, dry deposition could not be modelled accurately using the full

- 1 resistance model which calculates spatially and temporally varying particle deposition rates
- 2 based on geophysical parameters and meteorological conditions. Instead, dry deposition
- 3 was modelled using a bulk deposition velocity of 1.67 cm/s for TSP and PM₁₀, and a bulk
- 4 deposition velocity of 0.167 mm/s for $PM_{2.5}$ (Tombach and Brewer 2005). Wet deposition
- 5 was modelled using prognostic WRF precipitation output to determine precipitation in
- 6 CALMET and scavenging coefficients of 1.0×10^{-4} s⁻¹ in liquid rain and 3.0×10^{-5} s⁻¹ in frozen
- 7 precipitation. These represent the default CALPUFF values for PM_{10} and were assumed to
- 8 be representative of TSP and PM_{2.5} due to the lack of size-specific information.

9 2.5.2.8 Operation Schedule

All construction activities would be conducted in 10-hour shifts, with one or two shifts per 10 11 day depending on the activity, six days per week. Some activities (e.g., construction 12 material excavation, earthfill works at the dam site area, aggregate production and concrete 13 batching) would also be limited to the summer season, with work being conducted only 14 between April and October or between May and September. For activities that occur year-15 round, hours of activity were incorporated directly into dispersion modelling as inputs to CALPUFF using the option for diurnal variation. For generators that are required two shifts 16 17 per day and are unlikely to be turned off during the two-hour shift turnaround periods, 18 months of activity were incorporated into the modelling using the option for monthly 19 variation. Since the options for monthly and diurnal variations cannot be invoked together 20 for a single source in CALPUFF, sources for which both hourly and monthly variation occur 21 were incorporated through the use of an external VOLEMARB.DAT or BAEMARB.DAT file 22 for arbitrarily variable emissions, except in the case of vehicle emissions. For vehicle 23 emissions, the specification of volume sources along the length of roads results in too many 24 sources to feasibly be defined in external VOLEMARB.DAT files and, therefore, the option 25 for diurnal and seasonal variation was invoked, allowing hours of activity to be specified 26 according to the shift schedule, and allowing emissions to be turned off during the winter 27 season, defined in CALPUFF as December to February. The six days per week schedule 28 was incorporated by scaling all monthly and annual model results by a factor of 0.86 (i.e., 6 29 days out of 7), with the exception of stockpiles which are subject to wind erosion at all 30 times, even during periods of inactivity.

31 **2.5.3 Model Output Interpretation**

Maximum TSP dry and wet deposition rates (i.e., dustfall) as well as maximum ground-level concentrations of CACs were predicted for each model run at each receptor. Post-

- 34 processing techniques were employed to determine required results for comparison with
- 35 ambient air quality objectives.

1 2.5.3.1 Summing of Model Results

- 2 The CALSUM post-processing software was used to sum the predicted dry and wet
- 3 deposition rates and ground-level concentrations at each receptor from each of the 19
- 4 model runs to obtain the total predicted deposition rates and concentrations from all
- 5 emission sources. Since the CALPUFF model simulates and predicts dry and wet
- 6 deposition separately, the POSTUTIL post-processing software was used to determine the
- 7 total deposition rates. The CALPOST post-processing software was then used to extract
- 8 required results from the resulting binary files.

9 2.5.3.2 NO_x to NO_2 Chemistry

- 10 Emissions of NO_x from the Project are comprised of NO and NO₂. The primary emission is
- 11 in the form of NO with reactions in the atmosphere resulting in the conversion of NO to
- 12 NO₂. The ambient air quality objectives are based on NO₂, not NO_x nor NO. Dispersion
- 13 models such as CALPUFF predict NO_x concentrations.
- 14 The reaction between NO and O_3 is one of the most important means of converting NO to
- 15 NO₂, especially in non-urban areas:

16 NO +
$$O_3 \Rightarrow NO_2 + O_2$$

- 17 According to the Guidelines for Air Quality Dispersion Modelling in BC (BCMOE 2008), the
- 18 first and most conservative method of estimating NO₂ is to assume 100% conversion of
- 19 NO_x into NO₂. If a more accurate estimate is desired, the ozone-limiting method or the
- 20 ambient ratio method may be used. In this report, NO₂ concentrations were estimated using
- 21 the ozone-limiting method:
- 22 $NO_2 = 0.1*NO_x + lesser of (O_3 or 0.9 NO_x)$
- 23 Ozone concentrations used for this conversion were derived from ambient monitoring data
- 24 at the Taylor Townsite station. As per the Guidelines for Air Quality Dispersion Modelling in
- 25 British Columbia (BCMOE 2008), background ozone concentrations used for NO_x to NO₂
- conversion were based on the maximum of one-hour and 24-hour average observations.
- 27 Annual average background ozone concentrations were based on the average of all
- 28 observations. The data are discussed in Section 3.3.6, and resulting background
- 29 concentrations are shown in Table 3.3.5.

30 **2.5.3.3** SO_x to SO₂ Conversion

- 31 Emissions of SO_x include all sulphur oxides, the primary form of which is SO₂. Ambient air
- 32 quality objectives are based on SO₂, not SO_x. A 100% conversion was conservatively
- 33 applied to ambient SO_x concentrations predicted by dispersion modelling to estimate
- 34 maximum ambient SO₂ concentrations.

1 **2.5.3.4 Determination of Background**

- 2 The Guidelines for Air Quality Dispersion Modelling in British Columbia (BCMOE 2008)
- 3 require that representative background concentrations be added to concentrations
- 4 predicted by dispersion modelling to account for other emission sources in the study area.

5 As per the Guidelines for Air Quality Dispersion Modelling in British Columbia (BCMOE

- 6 2008), the 98th to 100th percentile of historical monitoring data is to be added to maximum
- 7 predicted concentrations. This methodology is very conservative as it assumes that the
- 8 maximum predicted concentration and the background concentration would occur at the
- 9 same time even though, by definition, concentrations equal to or greater than the 98th
- 10 percentile occur only 2% of the time and the maximum predicted concentration, by
- 11 definition, would occur once during the modelled period.
- 12 For this study, short-term (1-hour to 24-hour) average background concentrations were
- 13 based on the 98th percentile of representative ambient air quality observations. Annual
- 14 average background concentrations were based on the average of all representative
- 15 ambient air quality observations, except for the annual average background TSP
- 16 concentration, which was calculated as the geometric mean of all observations as per the
- 17 statistic on which the air quality objective is based. Due to the limited amount of 30-day
- 18 average dustfall data, the average of all dustfall monitor results were used as background.

19 2.6 Study Limitations

- A number of limitations are inherent in the air quality study. These include limitations in emissions estimation and limitations in dispersion modelling.
- 22 Emissions have been estimated based on Project-specific activity data where available, and
- 23 default activity data from US EPA where Project-specific information are not available.
- 24 Default activity data are based on the average of conditions observed at a limited number of
- 25 project sites, mainly in the Unites States, which may not be representative of the Project.
- 26 The use of published emission factors is associated with inherent limitations in that such
- 27 factors are based on averages of available data, which may not be sufficient to extrapolate
- for Project-specific activity parameters (e.g., vehicle speed, material silt content, etc.)
- 29 outside the observed range of these parameters. Furthermore, these published emission
- 30 factors are typically representative of long-term averages and the use of such emission
- factors for estimating short-term emission rates for dispersion modelling are associated withuncertainties.
- 33 By definition, air quality dispersion models can only approximate atmospheric processes.
- 34 Many assumptions and simplifications are required to describe real phenomena in
- 35 mathematical equations. Model uncertainties can result from:
- 36
- Simplifications and accuracy limitations related to source data

Extrapolation of meteorological data from selected locations to a larger 1 2 region 3 Simplifications of model physics to replicate the random nature of 4 atmospheric dispersion processes 5 Models are reasonable and reliable in estimating the maximum concentrations occurring on 6 an average basis. That is, the maximum predicted concentration that may occur at some 7 time somewhere within the model domain, as opposed to the exact concentration at a point 8 at a given time, is usually within the $\pm 10\%$ to $\pm 40\%$ range (US EPA 2003) of the observed 9 maximum concentration. Typically, a model is viewed as replicating dispersion processes if 10 it can predict within a factor of two, and if it can replicate the temporal and meteorological 11 variations associated with monitoring data. Model predictions at a specific site and for a specific hour, however, may correlate poorly with the associated observations due to the 12 13 above-indicated uncertainties. For example, an uncertainty of 5 to 10 degrees in the 14 measured wind direction can result in concentration errors of 20% to 70% for an individual 15 event (US EPA 2003).

16 3 RESULTS OF BASELINE INVESTIGATIONS

17 The technical and dispersion modelling study areas are characterized by mostly low 18 population densities in rural settings. Forestry, agriculture, oil and gas, mining and power 19 generation are the main industries and emission sources in the region. In addition, off-road 20 transportation contributes between 15 and 50 percent to pollutant emissions in the two study areas. Fort St. John is the largest population centre. Within population centres, 21 22 emissions from vehicle traffic and residential wood heating are important factors to local air 23 quality as are emissions from vehicle traffic along major roads, in particular Highway 97 24 (i.e., Alaska Highway). 25 The following subsection provides more detailed information on emissions in the technical

- study area and dispersion modelling study area. Subsection 3.2 covers aspects of the
- 27 regional meteorology pertaining to the transport and dispersion of pollutant emissions.
- Ambient air quality measurements are discussed in Subsection 3.3.

29 **3.1 Baseline Emissions of Criteria Air Contaminants**

Baseline emissions of $PM_{2.5}$, PM_{10} , NO_x , SO_x , and CO are considered in this section. In addition, TSP is included in the discussion, since total particulate matter reveals additional information on the emission characteristics of a source category. Total oxides of nitrogen and sulphur (NO_x and SO_x) are specified rather than the individual CACs for which there are ambient air quality objectives (NO_2 and SO_2) because these oxides are photochemically active in the atmosphere and the ratios of various oxides in ambient air are not equal to the ratios at which they are emitted at the source. This is particularly true for NO_x and NO_2 and,

- 1 therefore, conversion from NO_x to NO_2 is not estimated until after dispersion modelling is
- 2 conducted as discussed in Subsection 2.5.3.2. Since SO₂ is more photochemically stable, it
- 3 is standard practice to assume that 100 percent of SO_x is converted to SO_2 ; however,

4 emissions are typically presented as SO_x not SO₂.

5 The tables in the following subsections show emissions divided into three source

6 categories: industrial, area and mobile sources. The area and mobile source categories are

7 further divided by source type such as agriculture, residential wood heating, aircraft, and

8 heavy-duty diesel vehicles. Data for area and mobile source were provided by BCMOE for

- 9 the most recent inventory year, 2000 (BCMOE 2000). A total of 43 industrial facilities were
- 10 identified from Environment Canada's National Pollutant Release Inventory (NPRI) in the
- 11 technical study area for the year 2010, 16 of which are located in the dispersion modelling
- 12 study area. A detailed list of emissions from each industrial facility is provided in
- 13 Appendix E.

14 **3.1.1 Baseline Emissions in the Technical Study Area**

15 3.1.1.1 Total Suspended Particulate

16 More than half of TSP emissions are from point sources (Table 3.1.1). The primary source

17 of industrial TSP emissions is the Willow Creek mine. Agriculture and off-road vehicles are

18 the main contributors to TSP emissions from the area and mobile source categories,

19 respectively, contributing roughly one fifth of total TSP emissions each.

20 Table 3.1.1 Air emissions inventory for the technical stud	y area
---	--------

Cotogon/Sector	Pollutant Emissions (tonnes/year)							
ubtotal Point sources rea Sources griculture esidential Wood Heating orest Fires rescribed Burning ther Area Sources ubtotal Area Sources	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	со		
Point sources								
Subtotal Point sources	6,600	2,860	391	6,360	13,900	15,400		
Area Sources								
Agriculture	2,510	1,240	347	1,370	39.5	1,260		
Residential Wood Heating	205	194	193	22.3	3.19	1,180		
Forest Fires	478	366	329	48.8	1.22	2,490		
Prescribed Burning	9.88	6.59	6.16	1.18	0.03	59.0		
Other Area Sources	294	226	220	60.7	10.5	1,250		
Subtotal Area Sources	3,500	2,030	1,100	1,500	54.4	6,240		
Mobile Sources								
Aircraft	9.04	8.92	8.70	43.3	2.10	310		
Heavy-Duty Diesel Vehicles	34.9	34.9	30.6	927	17.1	210		
Heavy-Duty Gasoline Vehicles	0.38	0.37	0.26	19.7	0.44	115		

Category/Sector	Pollutant Emissions (tonnes/year)							
Category/Sector	TSP	PM10	PM _{2.5}	NOx	SOx	со		
Light-Duty Diesel Vehicles	4.64	4.63	4.02	33.3	8.24	27.7		
Light-Duty Gasoline Trucks	4.86	4.75	2.76	236	8.24	4,850		
Light-Duty Gasoline Vehicles	3.65	3.58	1.85	246	6.40	4,280		
Boats	4.81	4.81	4.43	12.3	0.42	270		
Railways	29.4	29.4	27.1	1,240	15.2	236		
Other Mobile Sources	2,970	1,590	678	3,140	7,560	6,230		
Subtotal Mobile Sources	3,060	1,680	758	5,900	7,620	16,500		

Volume 2 Appendix L Air Quality Technical Data Report

1 NOTES:

2 All numbers were rounded to three significant figures but no more than two decimal places.

3 Sources: National Pollutant Release Inventory 2010 (point sources) and BCMOE 2000 (all other sources).

4 3.1.1.2 Particulate Matter Less than 10 Microns in Diameter

5 Point sources contribute more than 40% of total PM_{10} emissions in the technical study area.

6 The Willow Creek mine is the dominant contributor to PM₁₀ emissions from point sources,

7 emitting 40% of total PM₁₀ emissions in the technical study area. The area and mobile

8 source categories contribute about one third and one quarter of all PM₁₀ emissions in the

9 study area, respectively.

10 3.1.1.3 Particulate Matter Less than 2.5 Microns in Diameter

11 Area sources and mobile sources contribute about one half and one third of PM_{2.5}

12 emissions, respectively, while point sources contribute roughly one sixth of PM_{2.5} emissions

13 in the technical study area. The dominant industrial PM_{2.5} source is the Willow Creek mine,

14 which emits 14% of total area-wide $PM_{2.5}$. Of the area sources, agriculture represents 15%

15 of total PM_{2.5} emissions in the technical study area and residential wood heating represents

16 9%. Almost 90% of all mobile source emissions are attributed to off-road vehicle emissions

17 (other mobile sources). Fifteen percent of total area-wide PM_{2.5} emissions are from forest

18 fires.

19 3.1.1.4 Oxides of Nitrogen

20 Nitrogen oxide emissions are dominated by the industrial and mobile source categories,

each emitting more than 40% of total NO_x in the technical study area. Emissions from point

- sources are more evenly distributed among the facilities than in the case of particulate
- 23 matter. The two largest NO_x point sources are Compressor Station 1 at Taylor and Pine
- River Gas Plant. Half of total mobile source emissions of NO_x are from off-road vehicles.
- 25 The other two source types with substantial contributions to the mobile source category are

- 1 railways and heavy-duty diesel vehicles. Area sources, primarily associated with the
- 2 agricultural sector, emit 11% of NO_x emissions in the technical study area.

3 3.1.1.5 Sulphur Oxides

- 4 The majority of SO_x emitted in the technical study is derived from two industrial facilities: the
- 5 Pine River Gas Plant (46% of total SO_x emissions) and the McMahon Gas Plant (16%).
- 6 Emissions of SO_x from area sources are less than 1%. Also, on-road mobile sources, boats,
- 7 and railways in the technical study area operate on low or non-sulphur containing fuels and
- 8 emit less than 1% of total SO_x . Other mobile sources, i.e., off-road vehicles, emit about one
- 9 third of total SO_x in the technical study area.

10 **3.1.1.6 Carbon Monoxide**

- 11 The industrial and mobile source categories each emit roughly 40% of CO emissions in the
- 12 technical study area. Almost 30% of all CO emissions are from Chetwynd Forest Industries'
- 13 lumber mill while all other industrial facilities emit 2% or less, each. Mobile sources emit
- 14 43% of total CO emissions in the technical study area and are mostly attributed to off-road
- vehicles (16%), light-duty gasoline trucks (13%), and light-duty gasoline vehicles (11%).
- 16 Forest fires contribute about 7% of total CO emissions, whereas agriculture, residential
- 17 wood heating, and other area sources emit about 3% each.

18 **3.1.1.7 Summary**

- 19 In the technical study area, point sources contribute 17% to PM_{2.5} and between 40% and
- 20 64% to the other five CACs. Area sources contribute 49% to PM_{2.5} and between 11% and
- 21 31% to the other CACs except SO_x, to which they contribute less than 1%. Mobile sources
- 22 contribute between 23% and 43% to all six CACs.
- 23 Of the three source categories, area sources emit the most PM_{2.5} but point sources emit the
- 24 most PM₁₀ and TSP. Agriculture is an important source of particulate matter emissions,
- contributing from 15% of $PM_{2.5}$ to 19% of TSP emissions. Off-road vehicles emit almost all
- 26 of the PM_{2.5}, PM₁₀ and TSP from mobile sources.
- 27 The main sources of NO_x , SO_x and CO emissions are point sources and mobile sources.
- 28 This is particularly true for SO_x, for which the area source category emits less than 1% of
- total emissions. Area sources emit 11% of NO_x (mainly agriculture) and 16% contribution of
- 30 CO.
- 31

3.1.2 Baseline Emissions in the Dispersion Modelling Study Area

- 32 Within the dispersion modelling study area, which is a subset of the larger technical study
- area, no air pollutant emissions were attributed to forest fires or prescribed burning in the
- 34 BCMOE 2000 emission inventory (Table 3.1.2).

Volume 2 Appendix L Air Quality Technical Data Report

Catagony/Saatar		Pol	lutant Emissi	ions (tonnes	per year)	
Category/Sector	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	со
Point sources						
Subtotal Point sources	289	192	42.0	2,950	3,730	1,740
Area Sources						
Agriculture	355	176	49.2	194	5.60	178
Residential Wood Heating	141	134	133	15.4	2.20	815
Forest Fires	0	0	0	0	0	0
Prescribed Burning	0	0	0	0	0	0
Other Area Sources	116	87.2	84.4	31.3	6.33	478
Subtotal Area Sources	612	397	267	241	14.1	1,470
Mobile Sources						
Aircraft	9.04	8.92	8.70	43.3	2.10	310
Heavy-Duty Diesel Vehicles	5.02	5.01	4.40	133	2.46	30.2
Heavy-Duty Gasoline Vehicles	0.05	0.05	0.04	2.84	0.06	16.5
Light-Duty Diesel Vehicles	0.80	0.80	0.69	5.72	1.31	4.77
Light-Duty Gasoline Trucks	0.77	0.76	0.44	37.5	1.31	771
Light-Duty Gasoline Vehicles	0.65	0.64	0.33	43.9	1.14	764
Boats	0	0	0	0	0	0
Railways	5.68	5.68	5.23	239	2.94	45.6
Other Mobile Sources	489	281	151	1,060	3,510	2,570
Subtotal Mobile Sources	511	303	171	1,570	3,520	4,510

1 Table 3.1.2 Air emissions inventory for the dispersion modelling study area

2 NOTES:

3 All numbers were rounded to three significant figures but no more than two decimal places.

4 Sources: National Pollutant Release Inventory 2010 (point sources) and BCMOE 2000 (all other sources).

5 3.1.2.1 Total Suspended Particulate

6 Point sources emit 21% of all TSP in the dispersion modelling study area. The largest

7 sources are the Canfor Taylor Pulp, Peace Valley OSB, and Canadian Forest Products'

8 sawmill in Fort St. John. Area sources emit 43% of total TSP emissions in the dispersion

9 modelling study area with about 25% from agriculture, 10% from residential wood heating,

10 and 8% from other area sources.

1 3.1.2.2 Particulate Matter Less than 10 Microns in Diameter

- 2 Point sources emit 22% of the coarse particulate matter size fraction (PM₁₀). The Canfor
- 3 Taylor Pulp and the Peace Valley OSB facilities are the main PM₁₀ sources with
- 4 contributions of 14% and 5%, respectively. The area source category contributes almost
- 5 half of all PM₁₀ emissions with 20% from agriculture, 15% from residential wood heating,
- 6 and 10% from other area sources. Off-road mobile sources emit 32% of total PM₁₀
- 7 emissions in the dispersion modelling study area.

8 3.1.2.3 Particulate Matter Less than 2.5 Microns in Diameter

- 9 More than half of all PM_{2.5} emissions in the dispersion modelling study area are emitted by
- 10 area sources. The spatial percentage of residential areas is larger in the dispersion
- 11 modelling study area than in the technical study area. Consequently, residential wood
- 12 heating has a larger share of area-wide PM_{2.5} emissions in the dispersion modelling study
- area (28%) than in the technical study area (9%). Agriculture contributed 10% and other
- 14 area sources 18% to total PM_{2.5} emissions in the dispersion modelling study area. Similar to
- 15 the technical study area, mobile sources emitted about one third of all PM_{2.5} in the
- 16 dispersion modelling study area, with almost 90% of that share emitted by off-road vehicles.
- 17 Industrial facilities emitted 9% of total PM_{2.5}, half of which was emitted by the Canfor Peace
- 18 Valley Oriented Strand Board (OSB) facility.

19 **3.1.2.4** Oxides of Nitrogen

- 20 Nitrogen oxide emissions are dominated by the industrial and mobile source categories,
- which emit 62% and 33% of total NO_x in the dispersion modelling study area, respectively.
- 22 Almost one half of the industrial emissions are emitted by the Spectra Energy Transmission
- 23 Compressor Station 1 at Taylor. Two thirds of total mobile source emissions of NO_x are
- from off-road vehicles. The other two sectors with substantial contributions to the mobile
- source category are railways (5%) and heavy-duty diesel vehicles (3%).

26 3.1.2.5 Sulphur Oxides

In the dispersion modelling study area, 51% of SO_x is emitted by point sources and 48% is emitted by mobile sources. The dominant industrial source of SO_x emissions is the Spectra McMahon Gas Plant. Off-road vehicles are the main source of SO_x emissions from mobile sources.

31 3.1.2.6 Carbon Monoxide

- Almost 60% of CO emissions in the dispersion modelling study area is emitted by the
- 33 mobile source category, with over half of this attributed to off-road vehicles, and 10% each
- 34 to light-duty gasoline trucks and light-duty gasoline vehicles. Industrial and area sources
- each emit about 20% of total CO emissions. Almost half of all industrial CO emissions are
- 36 from Spectra Energy Transmission's Compressor Station 1 at Taylor and about one quarter

from the Peace Valley OSB facility. Residential wood heating represents 11% of total CO
 emissions.

3 3.1.2.7 Summary

- 4 In the dispersion modelling study area, industrial source contributions to NO_x and SO_x are
- 5 62% and 51%, respectively. The contribution of point sources to other CACs is less than
- 6 23%. Area sources contribute between 43% and 56% to all particulate matter emissions,
- 7 19% to total CO, 5% to total NO_x, and less than 1% to total SO_x. Mobile sources contribute
- 8 between 33% and 58% to all six CACs.
- 9 The contribution of point sources to particulate matter emissions is less in the dispersion
- 10 modelling study area than in the technical study area. Area and mobile sources contribute
- 11 most to all size fractions of particulate matter. Similar to the technical study area, agriculture
- 12 is an important area source of particulate matter emissions in the dispersion modelling
- 13 study area, contributing from 10% of PM_{2.5} to and 25% of TSP emissions. Residential wood
- 14 heating contributes a larger fraction of particulate matter emissions in the dispersion
- 15 modelling study area than in the technical study area, contributing from 10% of TSP to 28%
- 16 of $PM_{2.5}$ emissions.
- 17 Point sources dominate NO_x emissions in the dispersion modelling study area followed by
- 18 mobile sources. The industrial and mobile source categories emit roughly 50% each to total
- 19 SO_x emissions in the dispersion modelling study area. The majority of the CO emissions
- 20 are emitted by mobile sources, particularly off-road sources.
- 21 22

3.1.3 Baseline Emissions in the Vicinity of Construction Material Sources and Hudson's Hope Shoreline Protection

This section summarizes baseline emissions in additional Project component areas within the air quality technical study area (see Figure 2.1.1). Air emissions were determined for 12 km by 12 km areas centred on the Project components. The breakup into source categories is the same as in Table 3.1.1 and Table 3.1.2 above. Where point sources were listed in NPRI, emissions of the individual facilities are shown. In addition, total emissions without forest fires are shown, because for small areas, the random occurrence of forest fires in the baseline year can lead to substantially higher baseline emissions that are not

- 30 representative for years in which no forest fires occur.
- 31 3.1.3.1 Wuthrich Quarry

32 There are four main sources of particulate matter emissions in the area surrounding

- 33 Wuthrich Quarry (Table 3.1.3): other mobile sources (off-road), agriculture, residential wood
- 34 burning, and other area sources. The major NO_x emission sources are other mobile
- 35 sources, some of the point sources, and agriculture. The only two substantial source
- 36 sectors for SO_x are other mobile sources and one of the industrial facilities. Main

- 1 contributors to CO emissions are mobile sources (most notably off-road), residential wood
- 2 heating, and other area sources.

3 Table 3.1.3 Air emissions inventory for 12 km by 12 km area centred on Wuthrich Quarry

Category	Sector			issions (tonnes per year)			
		TSP	PM ₁₀	PM _{2.5}	NOx	SOx	со
Point sou	irces						
NPRI ID	Facility						
7717	Spectra Energy Transmission, Booster Station 19 - Cabin Lake	0.56	0.56	0.56	47.5	NS	24.2
7963	Spectra Energy Transmission, BS 9. Nig Creek	NS	NS	NS	NS	NS	NS
7965	Spectra Energy Transmission, Booster Station 11 – Rigel	NS	NS	NS	33.3	NS	52.1
16406	Devon Canada Corporation, West Eagle 02-01	1.71	1.71	1.71	125	NS	NS
19733	Suncor Energy Inc., Suncor Kobes Battery (B-24- A/94-B-9)	NS	NS	NS	133	247	NS
19953	AltaGas Ltd Blair Creek Comp Stn d-058-F	NS	NS	NS	41.0	NS	27.0
Subtotal	Point sources	2.27	2.27	2.27	380	247	103
Area Sou	rces						
Agriculture		181	89.8	25.1	99.0	2.86	91.0
Residential Wood Heating		124	117	117	13.5	1.93	717
Forest Fires		0.31	0.24	0.21	0.03	0	1.61
Prescribed	d Burning	0	0	0	0	0	0
Other Are	a Sources	83.0	62.1	59.9	24.9	5.17	337
Subtotal A	Area Sources	389	270	203	137	9.96	1,15
Mobile So	Durces						
Aircraft		7.70	7.60	7.41	36.9	1.79	264
Heavy-Du	ty Diesel Vehicles	2.23	2.23	1.96	59.3	1.09	13.5
Heavy-Du	ty Gasoline Vehicles	0.02	0.02	0.02	1.26	0.03	7.36
Light-Duty	Diesel Vehicles	0.37	0.37	0.32	2.66	0.60	2.22
Light-Duty	Gasoline Trucks	0.35	0.34	0.20	17.1	0.60	352
Light-Duty Gasoline Vehicles		0.31	0.30	0.15	20.6	0.54	358
Marine Vessels		0	0	0	0	0	0
Railways		1.47	1.47	1.35	61.7	0.76	11.8
Other Mot	bile Sources	277	165	97.2	394	530	1,99
Subtotal I	Mobile Sources	290	177	109	593	535	2,99

Volume 2 Appendix L Air Quality Technical Data Report

Category/Sector	Pollutant Emissions (tonnes per year)							
	TSP	PM 10	PM _{2.5}	NOx	SOx	со		
Total without Forest Fires	681	449	313	1,110	792	4,240		

1 NOTES:

2 All numbers were rounded to three significant figures but no more than two decimal places.

3 Sources: National Pollutant Release Inventory 2010 (point sources) and BCMOE 2000 (all other sources).

4 Emissions of TSP (in tonnes per year) less than PM₁₀ reported in NPRI were set equal to PM₁₀ emissions.

5 -NS": not specified; NPRI reporting thresholds in tonnes/year are 0.3 (PM_{2.5}), 0.5 (PM₁₀), and 20 (all other pollutants).

6 **3.1.3.2 85th Avenue Industrial Lands**

- 7 Because the 12 km by 12 km areas centred on Wuthrich Quarry and 85th Avenue Industrial
- 8 Lands partially overlap, the air emission inventories for the two areas have similar
- 9 compositions. The four main emission sources of particulate matter in the area surrounding
- 10 85th Avenue Industrial Lands are other mobile sources (off-road), agriculture, residential
- 11 wood burning, and other area sources (Table 3.1.4). The major NO_x emission sources are
- 12 other mobile sources, some of the point sources, and agriculture. One industrial facility is
- 13 the dominant source of SO_x ; other mobile sources contribute only 15.6 tonnes per year
- 14 (about 5% of the total), unlike in the area around Wuthrich Quarry (530 tonnes per year).
- 15 Main contributors to CO emissions are mobile sources (most notably off-road), residential
- 16 wood heating, other area sources, and one industrial facility.

17Table 3.1.4Air emissions inventory for 12 km by 12 km area centred on 85th Avenue18Industrial Lands

Category/Sector	Pollutant Emissions (tonnes per year)						
	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	со	

Point so	urces						
NPRI ID	Facility						
5124	Spectra Energy Midstream Corporation, Highway Gas Plant	0.65	0.65	0.65	101	29.6	39.8
5169	Canadian Forest Products Ltd., Fort St. John	65.7	8.16	3.57	37.9	NS	102
7717	Spectra Energy Transmission, Booster Station 19 - Cabin Lake	0.56	0.56	0.56	47.5	NS	24.2
7963	Spectra Energy Transmission, BS 9. Nig Creek	NS	NS	NS	NS	NS	NS
7965	Spectra Energy Transmission, Booster Station 11 - Rigel	NS	NS	NS	33.3	NS	52.1
19733	Suncor Energy Inc., Suncor Kobes Battery (B-24- A/94-B-9)	NS	NS	NS	133	247	NS
20104	Canfor Pulp Limited Partnership, Peace Valley OSB	81.8	43.3	21.3	84.7	NS	467
Subtotal	Point sources	149	52.7	26.1	1 26.1 277		685
Area Sou	irces				-	-	-
Agricultur	re	145	72.0	20.1	79.4	2.29	72.9

	Pollutant Emission	s (tonnes per year)				
Category/Sector	TSP	PM 10	PM _{2.5}	NOx	SOx	со
Residential Wood Heating	156	147	147	16.9	2.42	897
Forest Fires	0	0	0	0	0	0
Prescribed Burning	0	0	0	0	0	0
Other Area Sources	116	86.7	83.7	32.8	6.83	475
Subtotal Area Sources	417	306	251	129	11.5	1,440
Mobile Sources						
Aircraft	8.64	8.52	8.31	41.4	2.01	296
Heavy-Duty Diesel Vehicles	2.37	2.37	2.08	63.1	1.16	14.3
Heavy-Duty Gasoline Vehicles	0.03	0.03	0.02	1.34	0.03	7.83
Light-Duty Diesel Vehicles	0.42	0.42	0.36	3.01	0.66	2.50
Light-Duty Gasoline Trucks	0.39	0.38	0.22	18.9	0.66	388
Light-Duty Gasoline Vehicles	0.35	0.34	0.18	23.5	0.61	409
Marine Vessels	0	0	0	0	0	0
Railways	1.44	1.44	1.33	60.6	0.75	11.6
Other Mobile Sources	279	175	120	337	15.6	2,560
Subtotal Mobile Sources	293	189	132	549	21.0	3,690
Total	858	547	409	1,120	310	5,820
Total without Forest Fires	858	547	409	1,120	310	5,820

1 NOTES:

2 All numbers were rounded to three significant figures but no more than two decimal places.

3 Sources: National Pollutant Release Inventory 2010 (point sources) and BCMOE 2000 (all other sources).

4 Emissions of TSP (in tonnes per year) less than PM₁₀ reported in NPRI were set equal to PM₁₀ emissions.

5 -NS": not specified; NPRI reporting thresholds in tonnes/year are 0.3 (PM_{2.5}), 0.5 (PM₁₀), and 20 (all other pollutants).

6 3.1.3.3 West Pine Quarry

7 Table 3.1.5 displays the air emissions inventory for the 12 km by 12 km area centred on

8 West Pine Quarry. For all pollutants, emissions are only a few percent of those in the areas

9 around Wuthrich Quarry and 85th Avenue Industrial Lands. None of the individual source

10 sectors shows similarly high emissions as in the latter two areas. No industrial facilities

11 have registered air emissions in the NPRI, and no forest fires were recorded within the area

12 during the inventory year.

Volume 2 Appendix L	Air Quality Technical Data Report
	a guanty roominou bata roport

	Pollutant Emissions (tonnes per year)					
Category/Sector	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	СО
Point sources						
Subtotal Point sources	0	0	0	0	0	0
Area Sources						
Agriculture	0	0	0	0	0	0
Residential Wood Heating	0.23	0.22	0.22	0	0	1.31
Forest Fires	0	0	0	0	0	0
Prescribed Burning	0	0	0	0	0	0
Other Area Sources	1.03	0.75	0.72	0.18	0.03	4.21
Subtotal Area Sources	1.26	0.97	0.94	0.20	0.03	5.52
Mobile Sources						
Aircraft	0	0	0	0	0	0
Heavy-Duty Diesel Vehicles	0.92	0.92	0.81	24.4	0.45	5.53
Heavy-Duty Gasoline Vehicles	0.01	0.01	0.01	0.52	0.01	3.03
Light-Duty Diesel Vehicles	0.10	0.10	0.08	0.70	0.19	0.58
Light-Duty Gasoline Trucks	0.11	0.11	0.06	5.52	0.19	114
Light-Duty Gasoline Vehicles	0.07	0.07	0.04	4.84	0.13	84.4
Marine Vessels	0	0	0	0	0	0
Railways	2.05	2.05	1.89	86.2	1.06	16.5
Other Mobile Sources	1.14	0.86	0.83	1.32	0.07	14.4
Subtotal Mobile Sources	4.40	4.12	3.72	124	2.10	238
Total	5.66	5.09	4.66	124	2.13	244
Total without Forest Fires	5.66	5.09	4.66	124	2.13	244

1 Table 3.1.5 Air emissions inventory for 12 km by 12 km area centred on West Pine Quarry

2 NOTES:

3 All numbers were rounded to three significant figures but no more than two decimal places.

4 Sources: National Pollutant Release Inventory 2010 (point sources) and BCMOE 2000 (all other sources).

5 **3.1.3.4 Portage Mountain Quarry**

6 During the inventory year, forest fires were recorded in the area around Portage Mountain

7 (Table 3.1.6). Particulate matter and CO emissions in the area were dominated by forest-

8 fire emissions. Totals without forest fires are similarly low as emissions around West Pine

9 Quarry.

Volume 2 Appendix L	Air Quality Technical Data Report
	a guanty roominou bata roport

	Pollutant Emissions (tonnes per year)					
Category/Sector	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	СО
Point sources						
Subtotal Point sources	0	0	0	0	0	0
Area Sources						
Agriculture	3.74	1.85	0.52	2.04	0.06	1.88
Residential Wood Heating	0.37	0.35	0.35	0	0.01	2.14
Forest Fires	72.2	55.3	49.7	7.37	0.18	376
Prescribed Burning	0	0	0	0	0	0
Other Area Sources	0.70	0.53	0.52	0.13	0.02	3.01
Subtotal Area Sources	77.0	58.0	51.1	9.58	0.27	383
Mobile Sources						
Aircraft	0	0	0	0	0	0
Heavy-Duty Diesel Vehicles	0.15	0.15	0.13	4.00	0.07	0.91
Heavy-Duty Gasoline Vehicles	0	0	0	0.09	0	0.50
Light-Duty Diesel Vehicles	0.03	0.03	0.03	0.23	0.05	0.19
Light-Duty Gasoline Trucks	0.03	0.03	0.02	1.36	0.05	27.9
Light-Duty Gasoline Vehicles	0.03	0.03	0.01	1.87	0.05	32.6
Marine Vessels	0.20	0.20	0.18	0.50	0.02	11.1
Railways	0	0	0	0	0	0
Other Mobile Sources	4.41	2.36	1.01	2.71	0.10	10.1
Subtotal Mobile Sources	4.85	2.80	1.38	10.8	0.34	83.3
Total	81.9	60.8	52.5	20.3	0.61	466
Total without Forest Fires	9.66	5.53	2.77	13.0	0.43	90.3

1 Table 3.1.6 Air emissions inventory for 12 km by 12 km area centred on Portage Mountain

2 NOTES:

3 All numbers were rounded to three significant figures but no more than two decimal places.

4 Sources: National Pollutant Release Inventory 2010 (point sources) and BCMOE 2000 (all other sources).

5 **3.1.3.5 Del Rio Pit**

6 Some forest fires were recorded in the emissions inventory for the 12 km by 12 km area

7 centred on Del Rio Pit, but their contributions to particulate emissions are less than ten

8 tonnes per year (Table 3.1.7). Agriculture and other mobile sources are the main contributor

9 to emissions of all pollutants. Overall, emissions in the area around Del Rio Pit are roughly

10 one order of magnitude lower than emissions around Wuthrich Quarry and 85th Avenue

11 Industrial Lands.

Volume 2 Appendix L	Air Quality Technical Data Report
	a guanty roominou bata roport

	Pollutant Emissions (tonnes per year)						
Category/Sector	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	СО	
Point sources							
Subtotal Point sources	0	0	0	0	0	0	
Area Sources							
Agriculture	42.8	21.2	5.92	23.4	0.67	21.5	
Residential Wood Heating	0.27	0.25	0.25	0	0	1.54	
Forest Fires	7.22	5.53	4.97	0.74	0.02	37.6	
Prescribed Burning	0	0	0	0	0	0	
Other Area Sources	1.02	0.97	0.97	0.18	0.01	5.17	
Subtotal Area Sources	51.3	27.9	12.1	24.3	0.70	65.8	
Mobile Sources					-		
Aircraft	0	0	0	0	0	0	
Heavy-Duty Diesel Vehicles	0.03	0.03	0.03	0.76	0.01	0.17	
Heavy-Duty Gasoline Vehicles	0	0	0	0.02	0	0.09	
Light-Duty Diesel Vehicles	0.01	0.01	0.01	0.04	0.01	0.04	
Light-Duty Gasoline Trucks	0	0.01	0.01	0.26	0.01	5.33	
Light-Duty Gasoline Vehicles	0	0.01	0.01	0.36	0.01	6.22	
Marine Vessels	0	0	0	0	0	0	
Railways	0	0	0	0	0	0	
Other Mobile Sources	43.0	21.4	6.07	23.6	0.69	23.9	
Subtotal Mobile Sources	43.1	21.4	6.11	25.0	0.73	35.8	
Total	94.4	49.4	18.2	49.3	1.43	102	
Total without Forest Fires	87.2	43.8	13.3	48.6	1.41	64.0	

1 Table 3.1.7 Air emissions inventory for 12 km by 12 km area centred on Del Rio Pit

2 NOTES:

3 All numbers were rounded to three significant figures but no more than two decimal places.

4 Sources: National Pollutant Release Inventory 2010 (point sources) and BCMOE 2000 (all other sources).

5 **3.1.3.6 Hudson's Hope Shoreline Protection**

6 Total emissions in the area centered on Hudson's Hope Shoreline Protection (shown in

7 Table 3.1.8) are similar to those around Del Rio Pit, with the exception of CO. Light-duty

8 gasoline vehicles and trucks contributed several hundred tonnes of CO more in the

9 Hudson's Hope Shoreline Protection area than at the Del Rio Pit area. Agriculture,

10 residential wood heating, other area sources, and other mobile sources are the main

11 emission sources for Hudson's Hope Shoreline Protection.

	Polluta	Pollutant Emissions (tonnes per year)						
Category/Sector	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	со		
Point sources								
Subtotal Point sources	0	0	0	0	0	0		
Area Sources								
Agriculture	38.1	18.9	5.27	20.8	0.60	19.1		
Residential Wood Heating	8.49	8.02	8.01	0.92	0.13	48.9		
Forest Fires	0	0	0	0	0	0		
Prescribed Burning	0	0	0	0	0	0		
Other Area Sources	5.68	4.42	4.32	1.08	0.19	24.9		
Subtotal Area Sources	52.3	31.3	17.6	22.8	0.92	92.9		
Mobile Sources								
Aircraft	0	0	0	0	0	0		
Heavy-Duty Diesel Vehicles	1.54	1.53	1.35	40.8	0.75	9.25		
Heavy-Duty Gasoline Vehicles	0.02	0.02	0.01	0.87	0.02	5.06		
Light-Duty Diesel Vehicles	0.19	0.19	0.17	1.37	0.35	1.14		
Light-Duty Gasoline Trucks	0.21	0.20	0.12	10.0	0.35	206		
Light-Duty Gasoline Vehicles	0.15	0.15	0.08	10.0	0.26	174		
Marine Vessels	0	0	0	0	0	0		
Railways	0	0	0	0	0	0		
Other Mobile Sources	43.4	22.9	9.22	26.0	0.91	84.5		
Subtotal Mobile Sources	45.5	25.0	11.0	89.1	2.64	480		
Total	97.8	56.3	28.6	112	3.56	573		
Total without Forest Fires	97.8	56.3	28.6	112	3.56	573		

1Table 3.1.8Air emissions inventory for 12 km by 12 km area centred on Hudson's Hope2Shoreline Protection

3 NOTES:

4 All numbers were rounded to three significant figures but no more than two decimal places.

5 Sources: National Pollutant Release Inventory 2010 (point sources) and BCMOE 2000 (all other sources).

6 3.2 Meteorology

7 Regional meteorological conditions determine how Project emissions (presented in Section

8 4.1) are transported and dispersed, resulting in predicted concentrations that are discussed

9 in Section 5. This section characterizes the meteorology within the dispersion modelling

10 study area. The two main characteristics that are discussed are winds, which determine the

11 horizontal and vertical transport of pollutants, and the mixing height, which determines the

total volume into which pollutants are dispersed. Winds and mixing heights, in turn, are

2 modified by topography and surface characteristics, which are discussed first.

3 3.2.1 Topography

4 The topography in the dispersion modelling study area varies over a range of a few

5 hundred metres (Figure 3.2.1). Steeper terrain, with elevation changes on the order of

6 about a hundred metres over a distance of 1 km, is mostly limited to the river valleys. Based

7 on this topography, complex-terrain flows can be expected occasionally at some of the

8 meteorological stations.

9 Three main flow regimes with distinct flow characteristics are typical for complex terrain and

10 their general characteristics are well studied and understood (e.g., Whiteman 2000). In the

11 first flow regime, during the day, under mostly sunny (fair weather) conditions with weak

12 large-scale winds, the atmosphere is unstable. Wind flow is primarily driven by local

13 horizontal temperature differences and convective turbulence. The general tendency under

14 these conditions is up-slope flows. Westerly up-valley flows might occur within the river

valleys. The weak, large-scale winds usually add to these local winds. The atmosphere is

16 well-mixed under convective conditions, and the mixing layer can reach heights of up to

17 2,000 m. This convective boundary layer is well isolated from the free atmosphere above by

a capping inversion, and vertical dispersion beyond the convective boundary layer isminimal.

20 In the second flow regime, under overcast windy conditions, the atmospheric stability is

21 neutral. Large-scale winds typically dominate, but might be channelled along the main

valley and some of the smaller tributary valleys. Large-scale winds couple strongly with the

23 surface, where roughness elements generate turbulence that disperses pollutants into a

24 mixing layer that can reach heights of more than 1,000 m.

25 The third flow regime occurs when the atmosphere is stably stratified, typically at night

26 under fair weather conditions or in the winter over snow cover. Wind flow is primarily driven

by local horizontal temperature differences leading to downslope and down-valley flows.

28 Surface winds under stable conditions tend to be decoupled from larger-scale winds aloft.

29 Vertical mixing is strongly suppressed and mixing heights do not exceed a few hundred

30 metres.

31 These three flow regimes are a high-level categorization of local and regional flows. Special

32 cases and complex local features also exist and can further complicate the flow. Of

33 particular importance are surface characteristics, which are described in the next

34 subsection.

35 **3.2.2 Surface Characteristics**

36 Surface characteristics are important for horizontal and vertical transport and dispersion of 37 pollutanta. Figure 2.2.2 shows land cover characterization and surface roughness length

37 pollutants. Figure 3.2.2 shows land cover characterization and surface roughness length

- 1 within the dispersion modelling study area. Land cover characterization is responsible for
- horizontal differences in local heat input to the atmosphere through surface moisture, 2
- reflectivity, conductivity, and heat capacity. These horizontal heterogeneities can modify 3
- 4 winds locally. Land cover characterization is also an underlying factor for surface roughness
- 5 length, which determines the generation of mechanically generated turbulence. Surface
- 6 roughness length is expressed as a characteristic length of individual roughness elements
- 7 that disturb the flow. The value chosen for a particular land-use type depends on the mean
- 8 and variability of the heights and shapes of individual roughness elements, their distance
- 9 from each other, and geometrical arrangement relative to the mean wind. In addition,
- 10 surface roughness length is a function of season because vegetation changes over the
- course of a year and snow cover tends to alter surface roughness length. 11
- 12 The southwestern part of the dispersion modelling study area is dominated by forest; water
- 13 and barren land are found along the Pine River, which runs through the dispersion
- 14 modelling study area. Surface roughness length is typically greatest for forested land (0.5 to
- 15 1.3 m) and lowest for water surfaces (0.001 to 0.002 m). The northwestern part of the
- 16 dispersion modelling study area shows a mixture of forest, agriculture, water (Charlie Lake),
- 17 and built-up area (Community of Charlie Lake to the southwest of the lake). Surface
- 18 roughness length is 0.01 to 0.20 m for agricultural land and 0.50 to 0.54 m for built-up
- 19 areas. The remainder of the dispersion modelling study area is dominated by agricultural
- land with the exception of the urban areas of Fort St. John and Taylor, stretches of forest 20
- 21 along the Peace River in the centre and the Beatton River in the northeast, and the water
- 22 surface of Cecil Lake in the northeast.
- 23 3.2.3

Modelled Flow Regimes

- 24 Results of the CALMET model, presented in greater detail in Appendix C, were used to 25 investigate the expected flow and dispersion characteristics within the dispersion modelling 26 study area.
- 27 Examples of modelled wind fields at 10 m for the three flow regimes are displayed in Figure 28 C.5. In general, these CALMET-derived wind fields agree with expected flows. During 29 unstable conditions (Figure C.5, left), upslope flows cause convergence over the elevated 30 terrain in the northwestern and southern parts of the dispersion modelling study area and 31 divergence in the river valleys. The westerly large-scale winds seem to dominate up-valley 32 flows. Only in the central southern part of the study area, the narrowing of the valley from 33 the southeast towards the northwest appears to enhance the along-valley temperature 34 gradient enough to cause an up-valley flow against the westerly large-scale winds. As the 35 day progresses, the convective boundary layer grows deeper than the topography in the 36 dispersion modelling study area and the wind fields are less affected by local topography 37 (see the diurnal variation on a typical summer day in Figure C.7).

- 1 Under neutral conditions (Figure C.5, centre), the model predicts a fairly uniform wind field
- 2 across the model domain. No channelling is apparent, with the exception of some northerly
- 3 steering of winds in the southeast over Taylor. The valleys might be too narrow and shallow
- 4 for the model to predict any channeling at the grid resolution for which the model was
- 5 applied. In addition, in reality the river valleys are mostly parallel or perpendicular to the
- prevailing southwesterly wind, so that generally little channelling is expected to actually
 occur.
- 8 Finally, the example for stable conditions (Figure C.5, right) shows downslope flows leading 9 to divergence over elevated terrain and convergence over the valley bottoms.
- 10 **3.2.4 Modelled Mixing Heights**
- 11 Mixing height is a measure of the depth of the layer into which air pollutants are mixed
- 12 vertically and is determined by a combination of atmospheric stability and surface
- 13 characteristics. Figure C.7 in Appendix C shows mixing heights for the same three
- examples of the unstable, neutral, and stable stability classes as in Figure C.6.
- 15 Mixing height in an unstable atmosphere is dominated by surface characteristics with
- respect to incoming radiation. In this example at 10:00 AM local time on July 7 (Figure C.6,
- 17 left), the surface has not received much heating yet, and CALMET-predicted mixing heights
- range from roughly 250 m to 700 m. Lowest mixing heights are predicted over water
- 19 because of its high heat capacity and the conversion of incoming solar radiation into
- 20 evaporation. In the northwest, a combination of upslope flows, high surface roughness
- 21 length, and built-up areas (low moisture, conductivity, and heat capacity) promotes mixing
- 22 heights of more than 600 m. Under unstable conditions, in particular early in the
- 23 development of the convective boundary layer, high ambient pollutant concentrations might
- be observed near elevated emission sources, because the strong vertical mixing tends to
- 25 disperse pollutants quickly towards the ground.
- In the example for neutral conditions (Figure C.6, centre), mixing heights vary between 900
- m and 2,200 m. The potential for vertical mixing and dispersion of pollutants is large. In this
- 28 particular example of southwesterly large-scale winds (see Figure C.5, centre), mixing
- 29 heights are highest over and downwind of areas with high surface roughness length, in
- 30 particular over the southwest and the northwest of the dispersion modelling domain. By
- 31 contrast, mixing heights are several hundred metres lower over the smoother agricultural
- 32 areas in the east and over Charlie Lake (northwest) and Cecil Lake (northeast). Because of
- 33 the quick and deep vertical mixing, high ambient pollutant concentrations are less common
- 34 under neutral conditions than under unstable or stable conditions.
- In the stable case (Figure C.6, right), mixing heights are mostly homogeneous and very low
- 36 at about 50 m. Mixing heights of up to 100 m are found mostly in small areas of convergent
- 37 flows over the valleys of Peace River and Beatton River in the eastern parts of the
- 38 dispersion modelling study area. Pollutants emitted under these conditions tend to be

1 trapped in a very shallow layer near the ground, which can often lead to high ambient

- 2 concentrations near the source or where larger-scale winds impinge on higher terrain
- 3 downwind of the source.

4 3.2.5 Observed Winds

5 Fort St. John Airport is located at an elevation of 650 to 700 metres (Figure 3.2.1).

6 Elevation varies less than 100 m within about two kilometres of the airport. Topography

7 exceeding the airport's elevation by more than 100 metres is more than ten kilometres

8 away, mostly to the west and northwest. Therefore, Fort St. John Airport provides a good

9 representation of larger-scale regional flows. Figure C.2 in Appendix C shows that most

frequent wind directions are from south-southwest to west-southwest (about 45 to 50% of the time), followed by winds from the north and north-northwest (15%) and the east and

12 east-southeast (10%).

13 Taylor is located about 200 m lower than Fort St. John Airport near the valley bottom in a

bowl with a diameter of roughly 4 km. The station at Taylor Townsite is likely partially

15 protected from stronger winds aloft and occasionally under the influence of winds

16 channelled along the river valley. The wind rose in Figure C.3 shows about twice as many

17 calms and substantially fewer strong winds than Figure C.2 for Fort St. John Airport. The

18 most frequent wind directions at Taylor Townsite are also from south-southwest to west-

19 southwest (about 30 to 35% of the time), but this station rarely measures northerly winds.

20 Field station STC7 at the proposed Site C Dam site is located on the upper edge of the river

valley, roughly 50 m lower than Fort St. John Airport station. Based on this location, STC7

is expected to be subject to larger-scale wind flows and occasional channelling of winds

along the valley axis roughly from northwest to southeast. The wind rose in Figure C.1

shows the expected general flow characteristics. Calms occur about 15% of the time. The

25 frequency of stronger winds is intermediate between Fort St. John Airport and Taylor

Townsite. The frequencies of winds at STC7 from southwesterly and northerly directions

are similar to Fort St. John Airport (Figure C.2). Winds from westerly to northwesterly

28 directions are more frequent at STC7 than Fort St. John Airport, which might be caused by

channelling of winds along the axis of the Peace River valley at STC7.

30 Because of the high frequency of southwesterly winds at all three measurement locations,

31 the urban areas of Fort St. John (to the west of the airport) would be more frequently

32 downwind of emissions from the proposed Site C Dam site than the urban areas of Taylor.

33 **3.3 Ambient Air Quality**

Ambient air quality measurements of PM_{2.5}, PM₁₀, dustfall, NO₂, SO₂, CO, and O₃ were

35 analysed using the methodology presented in Section 2.2 to evaluate baseline conditions in

36 the technical study area. In addition, representative background concentrations were

determined so they could be added to ambient concentrations predicted using a dispersion 1

model as per the Guidelines for Air Quality Dispersion Modelling in BC (BCMOE 2008). 2

3

3.3.1 Particulate Matter Concentrations

- 4 The time series plot for PM₁₀ observations at Fort St. John is illustrated in Figure 3.3.1.
- 5 Particulate concentrations at Fort St. John tend to follow a seasonal trend, with the highest
- concentrations in the spring and summer. The data collection periods for both PM_{2.5} and 6
- 7 PM₁₀ at Attachie Flat Upper Terrace and Old Fort are roughly one year from 2011 to 2012,
- 8 and for PM_{2.5} at Fort St. John roughly two years from 2001 to 2003; therefore, time series 9 plots are not shown.
- 10 Box plots for 24-hour average PM_{2.5} concentrations are illustrated in Figure 3.3.2, Box plots

are a simplified representation of the frequency distribution of data. The horizontal bars 11

were chosen to present key percentiles that are well spread on the vertical axis from bottom 12 to top: 2nd, 25th, 50th (median), 75th, and 98th percentiles. The narrow outer box spans the 13

2nd and 98th percentiles, the smaller, wider box spans the 25th and 75th percentiles, and the 14

line transecting the smaller box indicates the 50th percentile or the median. Median

15

concentrations of PM_{2.5} observed at Attachie Flat Upper Terrace were similar to those 16

observed at Old Fort, but the 98th percentile observed concentrations were considerably 17

higher at Attachie Flat, possibly due to episodes of wind-blown dust. 18

19 Box plots for 24-hour average PM₁₀ are illustrated in Figure 3.3.3. For all percentiles except

20 the 2nd percentile, higher PM₁₀ concentrations were observed at Fort St. John and Attachie

Flat Upper Terrace than at Old Fort. Particulate matter observations at Fort St. John are 21

22 likely dominated by residential emission sources. The Attachie Flat Upper Terrace

23 monitoring station is located in a large field, which may result in higher PM₁₀ observations

24 during dry weather conditions in the summer due to wind-blown dust.

25 For both PM₁₀ and PM_{2.5}, the 98th percentile observed concentrations are less than the

relevant air quality objectives, and the median observed concentrations are less than half 26

27 the relevant air quality objectives. These distributions are consistent with what one would

28 expect for a rural area, with some influence from urban sources at Fort St. John (Cheng et

- 29 al. 2000).
- 30 In addition to the wind-blown dust episodes, there was an extended downtime at the
- 31 Attachie Flat Upper Terrace station from September 28, 2011 through December 21, 2011.
- 32 The data completeness over the collection period is, therefore, less than the 75%
- 33 recommended by the BCMOE (2008). Furthermore, since PM observations at Fort St. John
- 34 are likely dominated by residential emission sources that are not considered representative
- 35 of the Project area, background PM_{2.5} and PM₁₀ concentrations are based on observations
- at Old Fort. 36

- 1 As discussed in Section 2.2, there are no TSP monitoring data available that may be
- 2 representative of baseline conditions in the Project area. Therefore, background PM₁₀
- 3 concentrations based on observations at Old Fort were used to represent background TSP
- 4 concentrations. While background TSP concentrations are likely to be higher than
- 5 background PM_{10} concentrations by definition, the calculation of background PM_{10} based on
- 6 the 98th percentile is likely to be sufficiently conservative such that background TSP
- 7 concentrations would not be underestimated.

8 3.3.2 Dustfall Deposition

9 Historical dustfall measurements were collected by the BCMOE near the Quintette and 10 Bullmoose mines, located about 35 to 45 km south of the technical study area, from the late 11 1980s to 2000. Data are available for the years 1993 to 2000, excluding 1997. However, data were incomplete for most of the years, with 1995, 1998 and 1999 being the most 12 13 complete years. The data are from locations outside the technical study area, but are close enough to provide context for historical dustfall from industrial activity in the region. These 14 15 dustfall data cover periods when the Bullmoose and Quintette mines were in operation and 16 mining activities would likely have had an influence on the measurements, although several 17 stations in the Tumbler Ridge area were located sufficiently distant from mine operations to 18 have had minimal contribution from mining activities. Dustfall measurements from these 19 stations are summarized in Table 3.3.1. A number of high dustfall readings were observed 20 at Tumbler Ridge Centre, the flatbed airstrip and 350 Man Camp in 1995. Data records 21 indicate that there may have been foreign matter in the sample canister, leading to unduly influenced results (Western Coal Corporation 2005). Apart from these, most measurements 22 in the Tumbler Ridge area were well below the 1.75 mg/dm²-d objective for residential 23 24 areas, with few exceedances observed.

Station					0	Dustfall (mg/dm²	-d)				
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1993												
Tumbler Ridge West	0.55	0.92	0.14	0.92	0.58	_	_	_	—	_	_	
Provincial Highway Control	0.21	0.30	0.30	0.10	0.23	_	_	_	-	_	_	_
1994												
Tumbler Ridge West	0.45	0.62	0.62	0.28	_	_	_	_	_	_	_	_
Provincial Highway Control	0.25	0.26	0.23	0.26	_	_	_	_	-	_	_	_
Upper West Bullmoose Valley	0.41	0.64	0.18	0.64	_	_	_	_	-	_	_	_
1995												
Tumbler Ridge West	0.33	0.40	0.40	0.71	1.44	0.65	1.02	0.63	1.78	0.66	0.30	0.2
Provincial Highway Control	0.19	0.25	0.25	0.35	0.47	1.98	0.41	0.44	0.12	-	_	0.1
Upper West Bullmoose Valley	0.18	-	-	_	0.35	—	0.36	0.56	0.37	0.22	0.59	0.3
Tumbler Ridge Centre	0.28	0.33	0.65	1.50	1.18	0.57	3.70	1.70	3.40	2.30	1.20	1.0
Near Flatbed Airstrip	0.26	0.50	6.98	6.98	2.47	1.46	2.20	1.60	0.50	2.20	2.40	0.9
Near 350 Man Camp	0.47	0.64	0.38	2.09	1.25	10.95	4.60	2.80	9.50	0.60	1.90	1.4
1996												
Tumbler Ridge West	—	_	_	0.94	_	_	_	_	—	_	_	—
Provincial Highway Control	—	-	_	0.21	—	—	—	—	—	_	—	—
Upper West Bullmoose Valley	—	_	_	0.10	_	_	_	_	—	_	_	—
1997												
All Stations	—	-	-	-	—	-	-	-	-	-	-	_
1998												
Tumbler Ridge Centre	2.41	0.66	1.04	0.61	0.00	0.22	0.28	0.05	0.11	0.23	0.05	0.1
Near Flatbed Airstrip	0.94	0.48	0.33	0.34	0.00	0.61	0.77	0.06	0.05	1.34	0.31	0.0

Table 3.3.1 Dustfall measurements near Quintette and Bullmoose mines

1

Ctation					0) Dustfall (mg/dm ²	-d)				
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Near 350 Man Camp	1.27	0.51	0.57	0.47	0.00	0.33	0.53	0.11	0.20	0.37	0.13	0.41
1999												
Tumbler Ridge Centre	0.10	0.09	0.32	0.49	0.33	0.31	_	_	_	0.49	0.00	0.13
Near Flatbed Airstrip	0.06	0.05	0.04	0.13	0.25	0.15	-	-	_	0.61	0.02	0.05
Near 350 Man Camp	1.60	0.18	0.07	0.22	0.74	0.39	-	-	_	0.77	0.17	0.37
2000												
Tumbler Ridge Centre	0.21	0.15	0.66	_	_	_	_	_	_	_	_	_
Near Flatbed Airstrip	0.10	0.07	0.04	_	_	-	_	_	_	_	_	-
Near 350 Man Camp	0.48	0.14	0.28	_	_	_	_	_	_	_	_	_

NOTES:

Source: Modified from Western Coal Corporation 2005 (formerly known as Western Canadian Coal).

Exceedances of the provincial objective for residential areas (1.75 mg/dm²-d) are shown in **bold**.

3 4

1 2

- 1 Five months of dustfall measurements near the Dillon mine, located about 10 km south of
- 2 the technical study area, are available for February, March, April, June, and July of 2005,
- 3 and are shown in Table 3.3.2. Four exceedances of the provincial objective for non-
- 4 residential areas of 2.9 mg/dm²-d were observed and were attributed to the fact that the
- 5 monitors were located in close proximity of mining operations. During this time, Dillon Mine
- 6 undertook several improvements in coal handling that resulted in a decrease of fugitive dust
- 7 emissions and dustfall levels in June and July.
- 8 Though the results are from outside the technical study area they demonstrate the level of
- 9 dustfall that may result from point sources and show that concentration may be reduced
- 10 through management practice.

		Du	ıstfall (n	ng/dm²-	d)	
Station	Feb	Mar	Apr	Мау	Jun	Jul
2005						
A1	0.17	0.89	-	_	2.45	2.00
A2 ^(a)	15.60	72.30	_	_	_	_
A3 ^(a)	4.24	2.68	2.65	—	—	_
A4	3.04	_	2.58	_	1.08	0.31
A5	_	_	_	_	1.46	<0.10 ^(b)
A6	_	_	_	_	0.65	1.24

11 Table 3.3.2 Dustfall measurements near Dillon mine

12 **NOTES**:

- 13 Source: Modified from Western Coal Corporation 2005 (formerly known as Western Canadian Coal).
- 14 Exceedances of the provincial objective for non-residential areas (2.9 mg/dm^2-d) are shown in bold.
- 15 A1 was located near streambed, 690 m south of crushing and screening operations.
- 16 A2 was located 280 m northeast of crushing and screening operations.
- 17 A3 was located near drainage ditch 120 m east of mine pit.
- 18 A4 was located near tributary 1.1 km northeast of mine pit.
- 19 $\,$ A5 was located along stream, 360 m southeast of crushing and screening operations.
- 20 A6 was located near creek 760 m northeast of mine pit.

 $^{\rm a}$ Monitors A2 and A3 were disabled and replaced by monitors A5 and A6, respectively.

- ^b Detection limit is 0.10 mg/dm²-d.
- 23
- 24 Dustfall was measured at several locations near the Willow Creek Mine, located within the
- technical study area. Of these sites, the only one located at a residence and, therefore,
- subject to the lower provincial objective of 1.75 mg/dm²-d is D9; the rest are subject to the
- 27 provincial objective of 2.9 mg/dm²-d. Dustfall measurements at the Willow Creek mine were
- made both during mining operations (Table 3.3.3) and during non-operational care and
- 29 maintenance (Table 3.3.4) when limited mining activities occurred. The majority of
- 30 measurements were well below the relevant provincial objective. Occasional elevated levels
- of dustfall were attributed to road dust emissions along nearby access roads during dry
- 32 weather conditions and infrequent high traffic volume from logging activity.

Station						Dust	fall (mg/o	dm²-d)				
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2005												
D1	0.61	0.16	0.60	0.27	0.67	0.14		0.26	0.22	0.25	0.41	0.37
D2	0.69	0.97	0.63	0.29	0.81	2.16		0.29	0.27	0.36	0.27	7.03
D3	0.18	0.34	0.30	0.84	0.39	1.27		0.35	6.65	0.28	0.31	1.53
D4	4.49	15.50	6.95	7.50	6.25	1.68		6.32	0.19	6.23	2.50	0.60
D5	0.73	3.28	3.58	3.09	1.85	3.80		2.18	0.65	1.06	0.58	0.35
D6	0.15	0.31	0.31	0.48	0.98	0.14		0.53	0.30	0.46	0.44	0.28
D7	0.06	0.23	0.20	0.45	0.25	0.43		0.31	0.36	0.36	0.25	0.13
D8	0.08	0.21	0.14	0.15	0.55	0.16		0.18	0.16	0.25	0.27	0.18
D9	0.09	0.06	0.04	0.14	0.20	0.06		0.17	0.08	0.19	0.06	2.47
2006												
D1	0.11	0.06	0.15	0.12	0.22	1.32	1.48	0.06	0.05	<0.01	0.14	NA
D2	0.44	0.11	0.21	0.43	0.26	0.40	0.52	0.15	0.04	0.02	0.22	NA
D3	0.36	0.16	0.35	1.23	21.10	0.89	0.80	0.66	0.28	0.14	0.16	0.28
D4	1.68	1.33	2.95	13.40	0.54	2.82	3.54	_	2.91	1.43	0.27	<0.01
D5	0.58	0.43	1.16	1.62	0.62	1.32	0.85	1.16	0.94	0.39	0.20	0.22
D6	0.19	0.15	0.72	1.02	0.42	0.78	0.50	1.18	0.44	1.01	0.11	0.05
D7	0.23	0.08	0.31	0.67	0.28	0.29	0.65	0.66	0.56	0.31	0.15	NA
D8	0.19	0.07	0.26	0.73	0.18	0.24	0.38	0.29	0.13	0.37	0.28	0.15
D9	0.05	0.06	0.14	0.39	0.19	0.34	0.16	0.26	0.27	0.10	0.20	NA
D10	0.44	0.18	0.35	0.58	0.44	0.07	0.09	_	0.15	0.33	0.09	0.19
D11	0.80	0.88	0.86	3.00	2.06	0.29	0.69	1.05	0.78	0.70	0.40	NA
D12	_	0.12	0.17	0.50	0.31	0.51	0.15	13.60	0.38	_	0.12	NA

 Table 3.3.3
 Dustfall measurements near Willow Creek mine during mining operations

1

04-41-0						Dus	tfall (mg/o	dm²-d)				
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
D13	—	0.18	0.23	2.22	0.38	1.13	0.22	0.43	0.07	—	0.18	NA
2007												
All Stations	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2008	-		-		-		-					
D1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.26	0.11	0.26	N/A
D2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.25	0.23	0.16	N/A
D3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.17	0.35	0.19	N/A
D4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.51	2.80	0.25	N/A
D5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.71	1.03	0.14	N/A
D6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2.63	1.34	0.29	N/A
D7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.20	1.40	0.20	N/A
D8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.80	0.57	0.17	N/A
D10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	_	_	_	N/A

1 NOTES:

2 Source: Modified from Western Coal Corporation 2010.

3 D1 and D2 were located at a temporary coal loading site.

4 D3 was located at the Canadian National Railway bridge.

5 D4 was located at the plant site.

6 D5 and D6 were located near the forest service road.

7 D7 and D8 were located near the highway.

8 D9 was located at nearest non-mine owned residence.

9 D10 was located at coal reject dump.

10 For July and August in 2005, a two month sample was taken.

11 Exceedances of the provincial air quality objective (2.9 mg/dm²-d at D9, 1.75 mg/dm²-d at remaining stations) are shown in bold.

12 N/A denotes -not applicable".

13

04-41					D	ustfall (mg/dm ²	-d)				
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2007												
D4	0.34	_	0.04	_	_	0.43	1.52	0.24	0.41	0.40	0.21	0.23
D5	0.06	0.07	0.09	0.46	0.46	2.07	0.41	0.40	0.69	0.38	<0.10	<0.20
D6	0.08	0.05	0.12	0.19	0.19	0.74	0.59	0.66	1.13	0.31	0.25	<0.20
D8	0.07	0.04	0.06	0.11	0.11	0.39	0.25	0.16	0.27	0.29	0.18	0.24
D10	0.13	0.01	0.10	1.38	1.38	0.81	1.20	1.72	2.95	0.58	0.30	<0.20
2008												
D4	<0.10	<0.10	0.11	0.29	1.28	8.46	4.13	4.83	N/A	N/A	N/A	0.34
D5	<0.10	<0.10	0.12	0.26	1.59	0.70	1.62	1.17	N/A	N/A	N/A	0.19
D6	<0.10	<0.10	0.21	0.31	0.48	0.72	1.73	1.49	N/A	N/A	N/A	0.15
D8	<0.10	0.18	0.43	0.39	0.23	0.21	0.78	0.46	N/A	N/A	N/A	0.38
D10	<0.10	<0.10	0.13	0.63	0.61	1.40	4.91	_	N/A	N/A	N/A	_
2009												
D4	0.28	—	0.53	0.14	0.41	1.84	5.12	1.55	0.48	—	—	—
D5	0.24	0.54	0.24	0.14	0.38	0.47	0.38	1.45	1.08	—	—	—
D6	0.14	0.37	0.28	0.17	0.45	6.02	7.53	1.51	1.99	—	_	_
D8	0.46	0.92	0.76	0.38	0.60	0.64	2.09	1.10	0.57	—	-	_
D10	_	0.43	0.23	0.17	0.42	0.88	0.62	1.73	0.79	_	_	_

1Table 3.3.4Dustfall measurements near Willow Creek during non-operational care and
maintenance

3 NOTES:

4 Source: Modified from Western Coal Corporation 2010.

5 D4 was located at the plant site.

6 D5 were D6 are located near the forest service road.

7 D8 was located near the highway.

8 D10 was located at coal reject dump.

9 Exceedances of the provincial air quality objective (2.9 mg/dm²-d at D9, 1.75 mg/dm²-d at remaining stations) are shown in

10 bold.

11 N/A denotes not applicable.

12

13 Overall, dustfall measurements near mine sites have been less than the relevant provincial

14 objectives, except during dust episodes from nearby activities. Due to the location and

- 15 guality of available dustfall data, the dustfall measurements made near Willow Creek Mine
- 16 during the non-operational care and maintenance period between 2007 and 2009 are
- 17 expected to be most representative of background dustfall levels in the dispersion
- 18 modelling study area.

1 3.3.3 Nitrogen Dioxide

2 The time series plots for NO₂ observations at Beaverlodge and Grand Prairie are illustrated

- 3 in Figure 3.3.4 and Figure 3.3.5, respectively. These two stations are the closest stations
- 4 with NO₂ measurements spanning substantially more than two years. Although located
- 5 outside the technical study area, they provide context for typical NO₂ background
- 6 concentrations and seasonal cycles in the region. A time series plot for NO₂ observations at
- 7 Taylor Townsite is not shown due to the short data period of only two years ended in 2002.
- 8 The time series for the 2006 to 2012 period at Beaverlodge are smoother than for the 2000
- 9 to 2005 period, indicating an improvement in monitor accuracy. Ambient concentrations of
- 10 NO₂ tend to be highest in the winter season when there is less daylight for the photolysis of NO₂.
- Box plots for 1-hour and 24-hour average NO₂ concentrations are illustrated in Figure 3.3.6
- 13 and Figure 3.3.7, respectively. Concentrations are highest in Grand Prairie which is likely a
- reflection of the size of the town and the presence of nearby oil and gas activity. The 98th
- 15 percentile observed concentrations at Grand Prairie are less than one-half the federal
- 16 maximum acceptable objective for the corresponding averaging period, while the 98th
- 17 percentile concentrations observed at Beaverlodge and Taylor Townsite are approximately
- 18 one-quarter of the 24-hour objective or less.
- 19 Measurements at all three monitoring stations appear to be representative of NO₂
- 20 conditions in small towns with some oil and gas activity and therefore may not be
- 21 representative of baseline NO₂ conditions in the dispersion modelling study area. As per
- recommendations from the BCMOE (Fudge 2012, pers. comm.), the background NO₂
- 23 concentration in the dispersion modelling study area was set to zero for all averaging
- 24 periods. This is justified, because there are no known sources of NO₂ or its precursors
- within a surrounding region on the order of 100 km that would be expected to cause
- 26 measurable concentrations of NO₂. In addition, chemical and physical removal processes
- 27 eliminate NO₂ from air masses that are transported from outside this region.
- 28 **3.3.4 Sulphur Dioxide**
- Time series plots of SO₂ observations at Taylor Townsite and Taylor South Hill stations are illustrated in Figure 3.3.8 and Figure 3.3.9, respectively. The time series for the 2008 to 2012 period are smoother than for the 2000 to 2007 period, indicating an improvement in monitor accuracy. Ambient SO₂ concentrations at both stations are very low, and within the measurement accuracy of the monitor during the 2000 to 2007 period before monitor accuracy was improved.
- Box plots of 1-hour and 24-hour average SO_2 concentrations are illustrated in Figure 3.3.10 and Figure 3.3.11, respectively. For both stations, the 2nd to 75th percentile concentrations
- are very low, less than 10 μ g/m³, while the 98th percentile concentrations are less than 20%
- 38 of the provincial Level A objective for the corresponding averaging period. The SO₂

- 1 concentrations measured at both Taylor Townsite and Taylor South Hill stations are
- 2 representative of rural conditions with some oil and gas activity. As per recommendations
- 3 from the BCMOE, the background SO₂ concentration in the dispersion modelling study area
- 4 was set to zero (Fudge 2012, pers. comm.). This is justified, because there are no known
- sources of SO_2 within a surrounding region on the order of 100 km that would be expected
- to cause measurable concentrations of SO₂. In addition, chemical and physical removal
- 7 processes eliminate SO₂ from air masses that are transported from outside this region.
- 8 3.3.5 Carbon Monoxide

9 The time series plot of CO observations at the Grand Prairie station is shown in Figure 10 3.3.12. This station is the closest station with CO measurements spanning substantially 11 more than two years. Although located outside the technical study area, the Grand Prairie 12 station provides context for typical CO background concentrations and seasonal cycles in 13 the region. Ambient CO concentrations have decreased over time and tend to peak in the winter, possibly due to higher heating emissions and oil and gas activity during this time. 14 Box plots of the one-hour and eight-hour averaging periods are shown in Figure 3.3.13 and 15 16 Figure 3.3.14, respectively. In the five-year period from January 2007 to December 2011, ambient CO concentrations have been relatively low, with a 98th percentile one-hour CO 17 concentration of 775 µg/m³, which is only 5% of the provincial Level A objective. The range 18 19 of CO concentrations observed at the Grand Prairie station is typical for rural areas with 20 some industry or rural influence, similar to, for example Fort McMurray or Lethbridge 21 (http://environment.alberta.ca/01644.html).

The BC modelling guideline (BCMOE 2008) recommends the use of the 98th percentiles 22 provided in the previous paragraph to establish CO background concentrations for one-hour 23 24 and eight-hour averages. As per recommendations from the BCMOE, the background CO 25 concentration in the dispersion modelling study area was set to 200 ppb or 229 μ g/m³ for 26 one-hour averages (Fudge 2012, pers. comm.), which is similar to the median one-hour and 27 eight-hour concentrations observed at Grand Prairie (Figures 3.3.13 and 3.3.14). The use 28 of these lower values rather than the 98th percentiles is based on the influence of nearby point sources to CO concentrations at the Grand Prairie air guality monitor. 29

30 **3.3.6 Ozone**

Hourly ozone concentrations were measured for a two-year period from January 2000 to 31 32 January 2002 at the Taylor Townsite station. For comparison, hourly ozone measurements 33 from the Grand Prairie monitoring station for the eight-year period from February 2004 to 34 January 2012 were also reviewed. This station is the closest station with ozone 35 measurements spanning substantially more than two years. Although located outside the 36 technical study area, the Grand Prairie monitoring station provides context for typical ozone 37 background concentrations and seasonal cycles in the region. Eight-hour running averages 38 were calculated, as shown in Figure 3.3.15 and Figure 3.3.16, and compared to the

- 1 numerical value of the Canada-Wide Standard (65 ppb). Ozone concentrations at Taylor
- 2 Townsite and Grande Prairie are similar, with eight-hour average concentrations reaching
- approximately 50 μ g/m³ in the summer. No excursions above the numerical value of the
- 4 Canada-Wide Standard were observed, with the eight-hour running average reaching
- 5 65 ppb only on one occasion at Grand Prairie.
- 6 Ozone measurements from the Taylor Townsite station are most representative of the
- 7 dispersion modelling study area due to the station's location inside the study area.
- 8 3.3.7 Representative Background Concentrations
- 9 As discussed above, background PM₁₀ and PM_{2.5} concentrations were based on
- 10 observations at the Old Fort station between March 2011 and January 2012. Background
- 11 PM₁₀ concentrations were used to also represent background TSP concentrations.
- 12 Background dustfall levels were determined based on measurements made near the Willow
- 13 Creek mine during the non-operation care and maintenance period between 2007 and
- 14 2009. Background ozone concentrations were based on observations at Taylor Townsite
- 15 station between January 2000 and January 2002. Background concentrations for NO₂, SO₂
- 16 and CO were selected with guidance from the BCMOE (Fudge 2012, pers. comm.) The
- 17 representative background concentrations selected for this Project are summarized in Table
- **1**8 **3.3.5**.

Volume 2 Appendix L Air Quality Technical Data Report

Pollutant	Averaging Period	Background Value
<u></u>	24-Hour	26
SP	Annual	5.4
PM10	24-Hour	26
N 4	24-Hour	15
M _{2.5}	Annual	5.0
ustfall ^(a)	24-Hour	0.8 mg/dm ² -d
	1-Hour	
O ₂	24-Hour	0.0
	Annual	
	1-Hour	
O ₂	24-Hour	0.0
	Annual	
^Y O	1-Hour	229
0	8-Hour ^(b)	160
	1-Hour	64 ppb
zone	24-Hour	19 ppb
	Annual	19 ppb

Table 3.3.5 Representative background concentrations (in µg/m³) 1

NOTES:

^a 24-Hour average based on a 30-day sample.

^b The eight-hour average concentration is calculated by applying a scaling factor of 0.7 (BCMOE 2008) to the specified one-hour average concentration.

4 RESULTS OF EMISSION ESTIMATION

2 Estimated emissions due to Project construction are presented in Section 4.1. Section 4.2

3 presents estimates of Project emissions during operation and maintenance.

4 4.1 Construction

- 5 Emission estimates of CACs for every year of Project construction activities are presented
- 6 by Project component and study area. Emissions associated with clearing activities,
- 7 including burning and incineration, are not included in the subtotals for each project
- 8 component; they are presented in a standalone subsection. Summary tables by
- 9 contaminant and year are presented in this section. Detailed emission estimates organized
- 10 by emission source and contaminant are provided in Appendix F.
- 11 4.1.1 Site C Dam Construction
- 12 Construction at the Site C dam site is anticipated to commence in Year 1 and scheduled for 13 completion in Year 8.
- 14 Emissions estimated for dam construction are presented in Table 4.1.1. The largest source
- 15 of TSP, PM_{10} and $PM_{2.5}$ emissions during dam construction was estimated to be
- entrainment of road dust on unpaved roads (95.5%, 94.4% and 83.1% of total emissions of
- 17 those particulate matter size fractions, respectively). Large haul trucks in combination with
- 18 the number of trips contribute to large emissions estimates. The second largest source of
- 19 TSP and PM_{10} was estimated to be bulldozing (1.70% and 1.44%, respectively). The
- 20 second largest source of PM_{2.5} emissions was estimated to be diesel-fuelled heavy
- 21 equipment (7.17%).
- 22 Greatest annual particulate matter emissions were estimated to occur in Year 5. The largest
- sources of TSP, PM_{10} and $PM_{2.5}$ in Year 5 were estimated to be unpaved roads (95.2%,
- 24 94.0% and 82.5%, respectively), bulldozing (1.86%, 1.66% and 5.94%, respectively),
- 25 grading (1.26%, 1.28% and 1.19%, respectively) and diesel-fuelled heavy equipment
- 26 (0.253%, 0.878% and 7.45%, respectively).
- 27 The largest source of NO_x and CO emissions during dam construction was estimated to be
- diesel-fuelled equipment (93.0% and 57.1%, respectively). The second largest source of
- 29 NO_X and CO was estimated to be vehicles (4.80% and 33.6%, respectively). Other sources
- 30 of NO_X and CO emissions include explosives and diesel generators.

Pollutant	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
TSP	5,747	6,903	9,273	8,766	9,886	9,647	7,916	2,017
PM ₁₀	1,646	1,985	2,670	2,527	2,848	2,780	2,271	576
PM _{2.5}	185	232	314	289	325	310	250	61.4
NO _X	148	230	336	281	299	279	196	37.0
SOx	0.738	1.29	0.963	0.696	1.09	1.10	0.439	0.0806
СО	116	179	202	187	215	209	141	31.3

1
 Table 4.1.1
 Site C dam construction emissions (in tonnes)

2 NOTES:

3 4 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.

5 Greatest annual NO_x emissions were estimated to occur in Year 3. The largest source of

NO_x estimated for Year 3 was diesel-fuelled heavy equipment (96.4% of total emissions). 6

7 The greatest annual CO emissions were estimated to occur in Year 5. The largest source of

8 CO estimated for Year 5 was diesel-fuelled heavy equipment (58.6% of total emissions).

9 The largest source of SO_x emissions during dam construction was estimated to be from

10 explosives (49.6% of total emissions). Other sources in the dam site area that generate SO_x

11 include diesel-fuelled heavy equipment (40.7% of total emissions), vehicles (9.64% of total

emissions) and diesel generators (0.227% of total emissions). Total annual SO_x emission 12

13 estimates were greatest in Year 2. The largest source of SO_x emissions estimated for Year

14 2 was explosives (69.6% of total emissions).

15 Emissions from vehicles in transit are tabulated separately as they would travel on public

roads that are outside the dam construction boundaries. These vehicles include worker 16

17 transportation and haul trucks from construction material source areas such as Wuthrich

18 and West Pine guarries. Emissions estimated for vehicles in transit, which include tailpipe

19 emissions and road dust from paved roads, are presented in Table 4.1.2.

Pollutant	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
TSP	100	93.4	93.7	299	120	113	375	57.5
PM ₁₀	19.6	18.3	18.3	57.7	23.3	22.3	73.4	11.3
PM _{2.5}	5.02	4.71	4.70	14.2	5.88	5.79	18.9	2.95
NO _X	5.85	5.86	5.08	4.68	4.29	9.14	32.5	3.20
SOx	0.0381	0.0381	0.0372	0.0373	0.0366	0.0455	0.0930	0.0334
СО	27.6	27.8	23.3	22.4	21.2	21.1	24.5	16.7

20 Table 4.1.2 Vehicles in transit emissions (in tonnes)

21 NOTE:

22 23 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to

rounding.

- 1 The largest source of TSP, PM_{10} and $PM_{2.5}$ for vehicles in transit was estimated to be paved
- 2 roads (100%, 98.0% and 93.1% of total emissions, respectively). All emissions of NO_x, SO_x
- and CO would be from fuel combustion in vehicles. Emissions from vehicles in transit were
- estimated to be greatest in Year 7 for particulate matter, NO_x and SO_x . Emissions of CO
- 5 from vehicles in transit were estimated to be greatest in Year 1 and Year 2.
- 6 Modelling of all dam site area construction is based on Year 3 for which particulate matter
- 7 and NO_x emissions are the highest. Although SO_x emissions are slightly higher in Year 2
- 8 and CO emissions are slightly higher in Years 5 and 6, modelling was based on Year 3 for
- 9 all pollutants. It is expected that the most substantial pollutant emitted during Project
- 10 construction is particulate matter, as a result of the numerous sources of fugitive dust.
- 11 The modelled year for vehicles in transit is dependent on activity. Vehicles in transit from
- 12 Wuthrich Quarry are based on Year 2 (see Section 4.1.2). Vehicles in transit from Area E
- are based on Year 7 (see Section 4.1.7). Vehicles in transit to/from Fort St. John and Taylor
- 14 represent worker transportation and service vehicles for which vehicle travel is expected to
- 15 be relatively constant throughout the duration of dam site area construction. As a result,
- 16 modelling for these vehicles is based on Year 1 when emission standards are the least
- 17 stringent and estimated emissions are greatest. Vehicles in transit to/from West Pine
- 18 quarry, Hudson's Hope and Chetwynd were not included in dispersion modelling since the
- 19 fraction of road associated with these routes that lies within the dispersion modelling study
- 20 area is small.
- Modelled emissions from dam site area construction and vehicles in transit are presented in Table 4.1.3. Modelled emissions exclude emissions from road dust, prescribed burning and
- 23 incineration.

24Table 4.1.3Modelled emissions from dam site area construction and vehicles in transit (in
tonnes)

Pollutant	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	CO
Dam site area construction	573	197	66	334	0.7	193
Vehicles in transit	0.2	0.2	0.2	1.3	0.08	4.5

26 4.1.2 Construction Material Sources – Wuthrich Quarry

- 27 Wuthrich Quarry is scheduled to provide temporary riprap and bedding material for the
- Project from Year 1 to Year 3, and in Year 8. Emissions from road construction for Wuthrich
- are covered in Section 4.1.9. The quarry is outside the dam site area construction
- 30 boundaries and would require haul trucks for material transport to the dam site area.
- 31 Estimates of CAC emissions at Wuthrich quarry are presented in Table 4.1.4. The largest
- 32 source of TSP, PM₁₀ and PM_{2.5} was estimated to be unpaved roads (84.1%, 81.3% and

- 1 54.5% of total emissions, respectively). Other large sources of particulate matter emissions
- 2 include bulldozing, drilling, blasting, and diesel-fuelled heavy equipment.
- 3 Total annual particulate matter emission estimates are greatest in Year 2. The greatest
- emissions of TSP, PM_{10} and $PM_{2.5}$ estimated for Year 2 were from unpaved roads (84.1%,
- 5 81.5% and 54.4% of total emissions, respectively), bulldozing (8.1.6%, 4.70% and 19.5% of
- total emissions, respectively) and drilling (3.44%, 5.54% and 5.60% of total emissions,
- 7 respectively).
- 8 The largest source of estimated NO_x emissions is diesel-fuelled equipment (83.7% of total
- 9 emissions). The largest source of estimated SO_x and CO emissions is explosives (91.1%)
- and 53.5% of total emissions, respectively). The greatest emissions of NO_x, SO_x and CO
- are expected to occur in Year 2. The largest emission source of NO_x in Year 2 was
- 12 estimated to be from diesel-fuelled heavy equipment (83.8% of total emissions). The
- 13 greatest emissions of SO_x and CO estimated for Year 2 were from explosives (90.9% and
- 14 53.5% of total emissions, respectively).

15 Table 4.1.4 Wuthrich quarry emissions (in tonnes)

Pollutant	Year 1	Year 2	Year 3	Year 8
TSP	89.7	97.9	65.7	5.13
PM ₁₀	26.3	28.7	19.2	1.66
PM _{2.5}	3.90	4.30	2.87	0.206
NO _X	6.60	7.23	4.86	0.316
SOx	0.121	0.132	0.0887	0.00579
СО	6.91	7.63	5.10	0.328

16 **NOTES**:

 $\begin{array}{l} 17 \\ 18 \end{array} \text{ All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.} \end{array}$

19 Modelling of Wuthrich Quarry was based on Year 2 as this represents the year in which the

20 most material is expected to be extracted, resulting in the highest emissions. Modelled

21 emissions at Wuthrich Quarry are presented in Table 4.1.5.

22 Table 4.1.5 Modelled emissions from Wuthrich Quarry (in tonnes)

Project Component	TSP	PM 10	PM _{2.5}	NOx	SOx	СО
Wuthrich Quarry	16	5.3	2.0	7.2	0.1	7.6

23

4.1.3 Construction Material Sources – 85th Avenue Industrial Lands

24 Impervious till material is planned to be sourced from 85th Avenue Industrial Lands to

25 construct the core of the earthfill dam, the approach channel lining and the upper part of the

26 upstream cofferdam. Material would be produced and transported to the Site C dam site

- 1 using a combination of conveyors and haul trucks from Year 3 to Year 7. Emissions from
- 2 road construction for 85th Avenue Industrial Lands are covered in Section 4.1.9.
- 3 Estimated CAC emissions from 85th Avenue Industrial Lands are presented in Table 4.1.6.
- 4 The largest source of TSP, PM_{10} and $PM_{2.5}$ was estimated to be unpaved roads (87.5%,
- 5 85.3% and 63.6% of total emissions, respectively). Grading, scraping and bulldozing were
- 6 also estimated to be large sources of particulate matter emissions. Estimates of TSP, PM₁₀
- 7 and PM_{2.5} emissions were greatest in Year 5. The largest source of estimate emissions of
- 8 TSP, PM_{10} and $PM_{2.5}$ in Year 5 was unpaved roads (87.2%, 85.6% and 63.7% of total
- 9 emissions, respectively).
- 10 The largest source of estimated emissions of NO_x, SO_x and CO was from diesel-fuelled
- 11 heavy equipment (98.6%, 97.8% and 97.5% of total emissions, respectively). Activities in
- 12 Year 5 were estimated to produce the most emissions of NO_x, SO_x and CO. The largest
- 13 source of NO_x, SO_x and CO emissions estimated for Year 5 was diesel-fuelled heavy
- 14 equipment (99.9%, 98.7% and 97.9% of total emissions, respectively).

Pollutant	Year 3	Year 4	Year 5	Year 6	Year 7
SP	84.6	113	243	216	229
PM ₁₀	24.6	32.8	70.6	62.9	66.8
PM _{2.5}	3.27	4.38	9.48	8.45	9.01
NO _X	2.72	3.63	7.83	7.14	7.59
SOx	0.00519	0.00691	0.0149	0.0136	0.0144
00	1.44	1.96	4.33	3.90	4.20

15 Table 4.1.6 85th Avenue industrial lands emissions (in tonnes)

16 **NOTES**:

 $\begin{array}{l} 17\\18\end{array} \quad \mbox{All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.} \end{array}$

19 Modelling of emissions at 85th Avenue Industrial Lands, presented in Table 4.1.7, was

20 based on Year 5, corresponding to the year when emissions are expected to be greatest.

21 Table 4.1.7 Modelled emissions from 85th Avenue Industrial Lands (in tonnes)

Project Component	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	CO
85 th Avenue Industrial Lands	30	10	3.4	7.8	0.01	4.3

1 4.1.4 Construction Material Sources – West Pine Quarry

2 West Pine Quarry is scheduled to provide permanent riprap and bedding material for the

3 upstream face of the dam from Year 1 to Year 7. Material would be hauled to the dam site

4 area using haul trucks. Emissions from road construction for West Pine Quarry are covered

5 in Section 4.1.9.

6 Emissions estimated for activities at West Pine quarry are presented in Table 4.1.8. The

7 largest sources of TSP and PM₁₀ at West Pine quarry were estimated to be bulldozing

8 (6.27% and 3.54% of total emissions, respectively), drilling (4.73% and 7.47% of total

9 emissions, respectively) and unpaved roads (84.2% and 80.4% of total emissions,

10 respectively). The largest sources of PM_{2.5} at West Pine quarry were estimated to be diesel-

11 fuelled heavy equipment (16% of total emissions), bulldozing (15% of total emissions) and

12 unpaved roads (55% of total emissions). Other sources of particulate matter emissions

13 include blasting, grading, scraping, material processing and diesel generators.

14 Estimated total annual particulate matter emissions are greatest in Year 7. The largest

15 source of TSP, PM_{10} and $PM_{2.5}$ in Year 7 was predicted to be from unpaved roads (84.7%,

16 81.1% and 55.0% of total emissions, respectively).

17 Diesel-fuelled heavy equipment were estimated to generate the most emissions of NO_x at

18 West Pine quarry (79.8% of total emissions), while explosives were estimated to generate

19 the most emissions of SO_x and CO (93.3% and 61.5% of total emissions, respectively).

20 Similar to particulate matter, activities at West Pine were estimated to produce the most

emissions of NO_x , SO_x and CO in Year 7.

Pollutant	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
TSP	25.1	22.0	27.7	164	40.5	36.2	215
PM ₁₀	7.55	6.63	8.32	48.8	12.1	10.8	64.0
PM _{2.5}	1.04	0.910	1.16	7.14	1.73	1.54	9.43
NO _X	1.89	1.65	2.09	12.7	3.10	2.76	16.8
SOx	0.0442	0.0385	0.0490	0.297	0.0725	0.0645	0.390
СО	2.23	1.94	2.47	15.4	3.70	3.29	20.3

22 Table 4.1.8 West Pine quarry emissions (in tonnes)

23 **NOTES**:

All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding. The emissions from West Pine Quarry are outside the dispersion modelling study area and thus were not modelled.

26

4.1.5 Construction Material Sources – Portage Mountain

27 Portage Mountain Quarry is scheduled to supply equal amounts riprap and material for road

construction and Hudson's Hope Shoreline Protection in Year 2 and Year 3. Material would

29 be transported using haul trucks to the location of use.

- 1 Emissions estimated for activities at Portage Mountain are presented in Table 4.1.9. The
- largest sources of TSP and PM₁₀ at Portage were estimated to be paved roads (43.2% and 2
- 3 28.8% of total emissions, respectively), drilling (20.0% and 32.9% of total emissions,
- 4 respectively) and bulldozing (22.2% and 13.0% of total emissions, respectively). The largest
- 5 emission sources of $PM_{2.5}$ were estimated to be bulldozing (29.0% of total emissions),
- 6 paved roads (24.9% of total emissions) and diesel-fuelled heavy equipment (18.4% of total
- 7 emissions). Although the scheduled production of riprap in Year 2 and Year 3 at Portage
- 8 Mountain Quarry are equal, emissions of particulate matter estimated were higher in Year 3
- 9 due to the aging and wearing of diesel-fuelled heavy equipment.
- 10 Emission sources of NO_x, SO_x and CO at Portage Mountain include explosives, diesel-
- fuelled equipment, diesel generators, and vehicles. The largest source of NO_x was 11
- 12 estimated to be diesel-fuelled heavy equipment (70.1% of total emissions) and the largest
- 13 source of SO_x and CO was explosives (96.1% and 73.1% of total emissions, respectively).
- 14 As with emissions of particulate matter, total annual emissions of NO_x, SO_x and CO were
- 15 estimated to be greater in Year 3 than Year 2.

16 Table 4.1.9 Portage Mountain Quarry emissions (in tonnes)

Pollutant	Year 2	Year 3	
TSP	102	102	
PM ₁₀	29.5	29.5	
PM _{2.5}	8.22	8.28	
NO _X SO _X	18.9	18.9	
SO _X	0.637	0.637	
СО	28.4	28.4	

17 NOTES:

All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to

18 19 20 rounding. The emissions from Portage Mountain Quarry are outside the dispersion modelling study area and thus were not modelled

21

4.1.6 Construction Material Sources – Del Rio Pit

- 22 Del Rio Pit is scheduled to supply material for road construction for Jackfish Lake Road
- 23 extension in Year 1. Material would be transported using haul trucks to the location of use.
- 24 Emissions estimated for activities at Del Rio Pit are presented in Table 4.1.10. The largest
- 25 sources of TSP, PM_{10} and PM_{25} were estimated to be grading (58.9% of total emissions),
- material handling (46.5% of total emissions) and diesel-fuelled heavy equipment (42.1% of 26
- 27 total emissions), respectively. Diesel-fuelled equipment was estimated to be the only source
- 28 of NO_x, SO_x and CO emissions at Del Rio Pit.

Volume 2 Appendix L Air Quality Technical Data Report

Pollutant	Year 1
TSP	4.43
PM ₁₀	1.70
PM _{2.5}	0.347
NO _X	1.43
SO _X	0.00270
СО	0.763

1 Table 4.1.10 Del Rio Pit emissions (in tonnes)

2 NOTES:

5

3 4 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to

rounding. The emissions from Del Rio Pit are outside the dispersion modelling study area and thus were not modelled.

4.1.7 **Construction Material Sources - Area E**

Area E is a potential source of 1,000,000 m³ of granular material in Year 7 if Zone 3 at the 6

7 dam site area does not have sufficient material. Material would be transported using haul

8 trucks to the dam site area. Emissions from Area E are not tabulated with total Project

9 emissions to avoid double counting emissions associated with producing 1,000,000 m³ of

granular material which would be shifted from Zone 3 at the dam site area to Area E. 10

Emissions estimated for activities at Area E are presented in 11

Table 4.1.11. The largest sources of TSP, PM₁₀ and PM_{2.5} were estimated to be unpaved 12

13 roads (91.7%, 89.5% and 80.3% of total emissions, respectively). Diesel-fuelled equipment

14 was estimated to be the largest source of NO_x, SO_x and CO emissions at Area E (73.6%,

15 70.1% and 82.4% of total emissions, respectively). Modelling of emissions from Area E, not

including unpaved roads, are presented in Table 4.1.12. 16

17 Table 4.1.11 Area E emissions (in tonnes)

Pollutant	Year 7
TSP	335
PM ₁₀	97.8
PM _{2.5}	10.9
NO _X	6.44
SO _X	0.0121
СО	3.01

18 NOTES:

19 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.

20 21

Project Component	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	СО
Area E	25	9.7	2.0	6.1	0.01	2.9

1 Table 4.1.12 Modelled emissions from Area E (in tonnes)

4.1.8 Hudson's Hope Shoreline Protection

3 Hudson's Hope Shoreline Protection is scheduled for construction in Year 4 and Year 5.

4 Material would be supplied from Portage Mountain and transported using haul trucks.

5 Emissions estimated for activities at Hudson's Hope Shoreline Protection are presented in

6 Table 4.1.13. The largest source of TSP at Hudson's Hope Shoreline Protection was

7 estimated to be grading (66.9% of total emissions) and the largest emission source of PM₁₀

8 and PM_{2.5} was estimated to be diesel-fuelled heavy equipment (62.8% and 93.9% of total

9 emissions, respectively). Total annual fine particulate matter emission estimates for Year 5

10 were slightly greater than emissions estimates for Year 4 due to the reduction in efficiency

11 from aging and wearing of diesel-fuelled heavy equipment. Emission estimates were

12 otherwise equal in Years 4 and 5 because of the equal amount of material handled at

13 Hudson's Hope Shoreline Protection in both years.

14 The only emission source of NO_x, SO_x and CO at Hudson's Hope Shoreline Protection is

15 expected to be diesel-fuelled heavy equipment. Total annual emissions of NO_x , SO_x and

16 CO were estimated to be equal in Year 4 and Year 5.

17 Table 4.1.13 Hudson's Hope Shoreline Protection emissions (in tonnes)

Pollutant	Year 4	Year 5
TSP	4.82	4.82
PM ₁₀	2.53	2.54
PM _{2.5}	1.64	1.65
NO _X	23.0	23.0
SO _X	0.0314	0.0314
СО	8.23	8.25

18 **NOTES**:

2

All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to

rounding. The emissions from Hudson's Hope Shoreline Protection are outside the dispersion modelling study area and thus were not modelled.

22 **4.1.9 Road Infrastructure**

23 Changes to permanent road infrastructure and temporary access roads are scheduled to

occur from Year 1 to Year 5. Road infrastructure construction includes the dam site area,

25 material source areas, transmission line, reservoir access roads and the re-alignment of

several segments of Highway 29.

- 1 Emissions of CACs from road infrastructure work are presented in Table 4.1.14. The largest
- 2 source of TSP emissions during road infrastructure work was estimated to be entrainment
- 3 of road dust on paved roads (60.0% of total emissions) and the largest source of PM₁₀ and
- 4 PM_{2.5} emissions was estimated to be asphalt production (65.8% and 83.6% of total
- 5 emissions, respectively). Other sources of particulate matter are expected to include
- 6 material handling, wind erosion from stockpiles, diesel-fuelled equipment and grading.
- 7 Emissions of particulate matter were estimated to be greatest in Year 4.
- 8 The largest source of NO_x, SO_x and CO emissions was estimated to be asphalt production
- 9 (88.0%, 100% and 96.9% of total emissions, respectively), followed by emissions from
- 10 diesel-fuelled heavy equipment (11.4%, 0.0167% and 1.89% of total emissions,
- 11 respectively). Emissions of NO_x , SO_x and CO were estimated to be greatest in Year 4.
- 12

Pollutant	Year 1	Year 2	Year 3	Year 4	Year 5
ГSP	738	1,003	498	1,156	977
PM ₁₀	156	264	260	526	487
PM _{2.5}	42.6	107	161	316	306
NO _X	126	240	520	1,083	1,057
SOx	0.174	235	547	1,014	1,014
00	62.6	558	1,232	2,330	2,316

13 **Table 4.1.14** Road infrastructure emissions (in tonnes)

14 **NOTES**:

17 4.1.10 Transmission Line

18 Construction of the transmission line is scheduled to occur from Year 1 to Year 4. Activities

19 along the right-of-way include site clearing and preparation, construction of access roads,

20 tower foundation and anchor installation, concrete production and placement, and tower

assembly. Emissions were estimated for the construction activities associated with the

22 transmission line and transmission towers.

23 Emissions estimated for the construction of the transmission line are presented in Table

- 4.1.15. The largest source of TSP, PM₁₀ and PM_{2.5} emissions from transmission line
- construction was estimated to be entrainment of road dust on paved roads (96.7%, 91.0%
- and 81.7% of total emissions, respectively). The large number of trips of pickup trucks and
- 27 long travel distances of flatbeds and tractor trucks may contribute to larger emissions. Other
- sources of particulate emissions include grading, vehicles, diesel-fuelled equipment and
- aircraft. Total annual emission estimates of TSP, PM₁₀ and PM_{2.5} are greatest in Year 4.

- 1 Diesel-fuelled heavy equipment was estimated to account for 64.5% of NO_x emissions.
- 2 Other sources of NOx emissions include vehicles and aircrafts. Total annual NOx emission
- 3 estimates were greatest in Year 4.
- 4 The largest source of estimated SO_x emissions was aircraft (56.2% of total emissions). The
- 5 second largest source of estimated SO_x was vehicles. Annual SO_x emissions were
- 6 estimated to be greatest in Year 4.
- 7 The largest source of CO during transmission line construction was estimated to be
- 8 vehicles (84.6% of total emissions). Diesel-fuelled heavy equipment and aircraft also
- 9 contribute to CO emissions. Total annual CO emissions predicted were greatest in Year 4.

Pollutant	Year 1	Year 2	Year 3	Year 4
TSP	0.930	4.76	21.8	27.0
PM ₁₀	0.179	1.03	4.49	5.37
PM _{2.5}	0.0436	0.294	1.24	1.41
NO _X	0.00888	0.851	2.69	1.80
SOx	0.000655	0.00371	0.0239	0.0208
СО	0.0637	1.97	6.71	4.82

10 Table 4.1.15 Transmission line emissions (in tonnes)

11 **NOTES**:

12 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.

14 **4.1.11 Clearing**

15 Clearing of vegetation is scheduled to occur from Year 1 to Year 3. Boats used to remove 16 debris from the reservoir would continue to be used beyond Year 3.

17 The largest sources of CAC emissions were estimated to be burning and incineration of

18 waste vegetation. Burning and incineration emission estimates are presented in Table

19 4.1.16. Total annual CAC emissions estimated from burning and incineration were greatest

in Year 1.

	•				
Pollutant	Year 1	Year 2	Year 3		
TSP	1,881	1,564	508		
PM ₁₀	1,231	1,025	333		
PM _{2.5}	1,202	1,001	325		
NO _X	596	496	161		
SO _X	13.8	11.4	3.69		
со	14,772	12,213	3,956		

1 Table 4.1.16 Burning and incineration emissions (in tonnes)

2 NOTES:

3 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.

5

6 Emissions estimated for clearing activities excluding burning and incineration are presented

7 in Table 4.1.17. Unpaved roads were estimated to be the largest source of TSP, PM₁₀ and

8 PM_{2.5} emissions (90.3%, 89.8% and 64.6% of total emissions, respectively) when burning

9 and incineration are not considered. Other sources of particulate matter emissions include

10 diesel-fuelled heavy equipment grading, paved roads, aircrafts, vehicles and boats.

11 Estimates of annual PM_{2.5}, PM₁₀ and TSP emissions were greatest in Year 1.

12 The largest source of NO_x and CO emissions was estimated to be diesel-fuelled heavy

13 equipment (62.6 and 48.2% of total emissions, respectively). Other sources of NO_x, and CO

emissions include aircraft, vehicles and boats. The largest source of SO_x emissions was

estimated to be aircraft (98.8% of total emissions). Other sources of SO_x include diesel-

16 fuelled heavy equipment, vehicles and boats. The estimated total annual emissions of NO_x,

17 SO_x and CO are greatest in Year 1.

18Table 4.1.17Emissions due to clearing activities (excluding burning and incineration) (in
tonnes)

Pollutant	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
TSP	430	370	130	0.053	0.053	0.053	0.053	0.053
PM ₁₀	120	110	36	0.053	0.053	0.053	0.053	0.053
PM _{2.5}	17	14	5.4	0.047	0.047	0.047	0.047	0.047
NO _X	31	27	13	2.8	2.8	2.8	2.8	2.8
SO _X	3.7	3.1	2.6	0.0010	0.0010	0.0010	0.0010	0.0010
СО	21	19	6.3	0.18	0.18	0.18	0.18	0.18

20 **NOTES**:

All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.

23 Emissions estimated from clearing activities, excluding burning, from Year 1 to Year 3 were

24 less than emissions from other dam construction activities in the same years. Emissions of

- 1 particulate matter from clearing activities in Year 1, the year with the most emissions
- 2 predicted, are less than ten percent of particulate matter emissions at the Site C dam site in
- Year 1. Although estimated emissions of NO_x, SO_x and CO from clearing activities in Year 1 3
- 4 were more than ten percent of emissions from Site C dam construction of the same year.
- 5 total emissions estimated in Year 1 were less than Site C dam construction emissions in
- 6 Year 3 as presented in Table 4.1.18.
- 7

8 Table 4.1.18 Clearing activities and Site C dam construction emissions (in tonnes)

	Site C dam construction plus clearing	Site C dam construction
Pollutant	Year 1	Year 3
TSP	6,172	9,273
PM ₁₀	1,768	2,670
PM _{2.5}	202	314
NO _X	179	336
SO _X	4.47	0.963
СО	137	202

9 NOTES:

 $\begin{array}{c} 10 \\ 11 \end{array}$ All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to

rounding.

12 4.1.12 Summary of Project Emissions in the Study Areas

4.1.12.1 Technical Study Area 13

14 Total annual emissions of CACs from the Project, excluding burning and incineration, are

15 presented in Table 4.1.19. Estimated emissions of all contaminants were greatest in Year 5.

16 Table 4.1.19 Total annual Project emissions (excluding burning and incineration in Years 1 to 17 3) (in tonnes)

Dellesteret	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Baseline
Pollutant									2000
TSP	7,131	8,597	10,293	10,529	11,270	10,012	8,736	2,080	13,200
PM ₁₀	1,979	2,439	3,071	3,200	3,444	2,876	2,476	589	6,570
PM _{2.5}	254	372	502	634	650	326	287	64.6	2,250
NO _X	321	532	906	1,413	1,397	301	256	43.3	13,800
SOx	4.85	240	552	1,015	1,015	1.23	0.938	0.121	21,600
СО	237	823	1508	2,571	2,568	238	190	48.5	38,100

18 NOTES:

19 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to

 $\tilde{20}$ rounding.

- 1 Total annual emissions of CACs from the Project, including burning and incineration, are
- 2 presented in Table 4.1.20. Estimated emissions of TSP were greatest in Year 5, estimated
- 3 emissions of PM₁₀ were greatest in Year 2, PM_{2.5} and CO are greatest in Year 1 and
- 4 estimated emissions of NO_x and SO_x are greatest in Year 4.

5 **Table 4.1.20** Total annual Project emissions (including burning and incineration in Years 1 to 3) (in tonnes)

Pollutant	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Baseline
Fonutant									2000
TSP	9,012	10,161	10,801	10,529	11,270	10,012	8,736	2,080	13,200
PM ₁₀	3,210	3,463	3,403	3,200	3,444	2,876	2,476	589	6,570
PM _{2.5}	1,456	1,373	827	634	650	326	287	64.6	2,250
NO _X	916	1,028	1,067	1,413	1397	301	256	43.3	13,800
SOx	18.6	251	555	1,015	1,015	1.23	0.938	0.121	21,600
СО	15,009	13,036	5,463	2,571	2,568	238	190	48.5	38,100

7 NOTES:

8 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.

10

11 Existing emissions in the technical study area were mainly due to other mobile sources,

- 12 which include diesel-fuelled heavy equipment. The largest source of Project-related mobile
- 13 emissions is diesel-fuelled heavy equipment.

14 Table 4.1.21 Total annual Project mobile emissions (in tonnes)

Pollutant Year 1	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Baseline
								2000	
TSP	26.1	27.1	33.2	37.0	36.1	25.9	22.9	4.62	3,060
PM ₁₀	26.1	27.1	33.2	37.0	36.1	25.9	22.9	4.62	1,680
PM _{2.5}	25.0	25.9	31.8	35.5	34.6	24.5	21.4	4.29	758
NO _X	311	292	375	446	430	294	257	43.2	5,900
SO _X	4.21	3.62	3.26	0.793	0.757	0.578	0.536	0.116	7,620
СО	211	237	242	282	274	215	179	48.3	16,500

15 **NOTES**:

 $\begin{array}{l} 16 \\ 17 \end{array} \text{ All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.} \end{array}$

18 4.1.12.2 Dispersion Modelling Study Area

- 19 Annual emissions estimated for the dispersion modelling study area are presented in Table
- 20 4.1.22. Emissions of particulate matter and CO were greatest in Year 3. Emissions

21 estimated for NO_x were greatest in Year 3 and emissions estimated for SO_x were greatest

in Year 2.

	area								
Pollutant	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Baseline
Pollulani	Pollulani								2000
TSP	5,862	7,024	9,438	8,901	10,150	9,884	8,167	2,041	1,410
PM ₁₀	1,677	2,018	2,717	2,564	2,923	2,847	2,342	581	892
PM _{2.5}	190	238	321	295	336	320	260	62.5	480
NO _X	156	239	345	286	308	287	205	38.1	4,760
SOx	0.869	1.43	1.07	0.713	1.11	1.13	0.464	0.0954	7,260
СО	131	195	216	196	225	219	151	36.3	7,720

1	Table 4.1.22	Total annual Project emissions (in tonnes) in the dispersion modelling study
2		area

3 NOTES:

4 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.

6 4.2 Operation

7

4.2.1 On-going Emissions from Regular Operation

8 Most of the activities during Site C dam operation are at the generating station. (Note that

9 maintenance activities are included as part of Site C dam operation) Emissions estimated

10 for operation activities at the Site C dam site are presented in Table 4.2.1. The largest

source of TSP and PM₁₀ is paved roads (88.8% and 60.4%, respectively) and diesel-fuelled

12 heavy equipment is the largest source of PM_{2.5} (51.5% of total emissions) and CO (44.4%

13 of total emissions). Boats account for 64.3% of NO_x emissions and 91.5% of SO_x

14 emissions. Emissions from the switch yard and microwave station account for less than one

15 percent of total emissions from operation activities.

16 Table 4.2.1 Emissions from operation and maintenance activities (in tonnes)

Activity	TSP	PM ₁₀	PM _{2.5}	NOx	SOx	CO
Paved Roads	0.406	0.0779	0.0189	-	-	-
Vehicles	0.00184	0.00184	0.00120	0.0161	0.000143	0.116
Diesel Equipment	0.0357	0.0357	0.0346	0.263	0.000504	0.139
Diesel Generators	0.00276	0.00276	0.00268	0.0853	0.000101	0.0160
Boats	0.0111	0.0109	0.00970	0.649	0.00801	0.0420
Total	0.457	0.129	0.0671	1.01	0.00875	0.313

17 **NOTES**:

18 All numbers less than 100 are rounded to three significant figures. Totals may not match numbers in Appendices due to rounding.

19 rounding.

20 4.2.2 Potential Wind Erosion of Exposed Shorelines

21 The potential for fugitive dust emissions from shoreline exposures in the proposed reservoir

22 was investigated by Nickling Environmental Ltd., and described in their Project

- 1 Memorandum dated August 14, 2012 (Nickling 2012). The potential for fugitive dust
- 2 emissions was evaluated based on experience at the Williston Reservoir, which included
- 3 six years of measuring both dust emissions at the source and regional ambient
- 4 concentrations of $PM_{2.5}$ and PM_{10} ; experience at other locations in North America; and a
- 5 review of data provided in the literature.

6 In comparison to Williston, the potential dust emissions from the proposed Site C Reservoir

7 could be as much as 10 to 100 times less than at Williston. This is due partly to the much

8 smaller size of exposed area resulting from drawdown of the Site C reservoir compared to

9 the Williston reservoir. At the Site C reservoir, approximately 189 ha would be exposed

10 during drawdown, in addition to bank cuts and exposed sediments deposited in the near

shore as a result of wave action. At Williston, up to 20,000 ha of beach and silt rich cliffs are

12 exposed during drawdown, with over 5,000 ha designated as major dust sources.

13 While the relative size of the exposed area due to drawdown is the primary driver of

14 potential wind fugitive dust emissions, the Site C reservoir also tends to have coarser

15 grained sediments than at Williston, further reducing the potential for erosion. Furthermore,

16 much of the exposed area in the Site C reservoir would be bedrock, as opposed to beach at

- 17 Williston. This would further reduce the potential for erosion and emissions of fugitive dust
- 18 at the Site C dam site.

19 The Nickling report therefore concludes that it is unlikely that dust emissions would be a 20 large contributor to emissions from the proposed Site C Reservoir. This is attributed to the:

- small annual drawdown and the associated small area of exposed beach
- the relatively coarse texture of a large proportion of the sediments
- amount of bedrock exposure at the beaches that would reduce sediment input

24 5 RESULTS OF DISPERSION MODELLING

Dispersion modelling using CALPUFF was conducted to predict concentrations of CACs
within the dispersion modelling study area using the methodology described in Section
2.5.2 and emission inputs as described in Section 4.1. The results of the dispersion

- modelling in the dispersion modelling study area are discussed in the following sections by
- 29 CAC. Results at individual receptors can be found in Appendix G.

30 5.1 Particulate Matter

- 31 This section describes predictions of particulate matter concentrations and dustfall
- 32 deposition rates in the dispersion modelling study area. As discussed in Section 1.1, there
- 33 are ambient air quality objectives for dustfall and three size classes of PM concentration,
- 34 namely TSP, PM₁₀ and PM_{2.5}.

1 5.1.1 TSP

2 The maximum predicted concentrations of TSP at various receptors in the dispersion 3 modelling study area are presented in Table 5.1.1. Without background, the BC level C 4 ambient air quality objective for the 24-hour averaging period would be exceeded outside the dam site area. Inside the dam site area the BC level A objective would be exceeded. 5 For the annual averaging period exceedances of the BC level C objectives¹ are predicted to 6 occur only outside the dam site area. Exceedances of the BC level A 24-hour objective are 7 8 predicted at one sensitive receptor location (North Camp Site), which is within the dam site 9 area (see Figure 5.1.1). The maximum concentration predicted outside the dam site area 10 occurs adjacent to the Wuthrich quarry but there are no known sensitive receptors in this 11 area. 12 When the ambient background value is included with the predicted concentration, for the 13 24-hour averaging period outside the dam site area, exceedances of the BC level C 14 objective would occur. Inside the dam site area at the North Camp Site, the exceedance 15 would become higher than the BC level B objective. For the annual averaging period, with background included, exceedances of the BC level C objective would occur outside the 16 17 dam site area close to Wuthrich quarry. Figure 5.1.1 shows the maximum predicted concentration isopleths for 24-hour TSP and Figure 5.1.2 shows the maximum predicted 18 19 concentration isopleths for annual TSP The highest values predicted outside the dam site

20 area for both averaging periods occur near Wuthrich quarry.

- 21 The frequency of exceedance of the Level A 24-hour TSP objective for each receptor type
- is indicated in Table 5.1.2. Figure 5.1.3 shows the spatial distribution of exceedance
- frequency of the Level A 24-hour TSP objective over the dispersion modelling study area.
- As with the maximum concentration isopleths, the highest frequency of exceedance of 56%
- was predicted outside the dam site area in the vicinity of the Wuthrich quarry.

26

¹ Note that an exceedance of a standard or objective at a higher concentration also means that the lower or more stringent objective has also been exceeded. For example, an exceedance of the Level C objective by definition also means that Level A and Level B objectives have been exceeded.

Averaging period	2	24-hour		Annual		
BC Level A Objective*	15	i0 μg/m3	60 µg/m3			
Receptor Type	Without background (µg/m3)	With background (μg/m3)	Without background (µg/m3)	With background (μg/m3)		
Outside Dam site area	618	644	131	136		
Fort St. John	19	45	3.1	8.5		
Taylor	5.9	32	1.0	6.4		
Residence (Ground- truthed)	83	109	12	17		
Non-Residence (Ground-truthed)	89	115	32	37		
Unknown Building	6.0	32	0.9	6.3		
North Camp Site	184	210	39	45		
South Camp Site	48	74	11	16		
School	9.3	35	1.3	6.7		
Child Care	8.9	35	1.4	6.8		
Health Care	9.0	35	0.7	6.1		
Senior Care	7.1	33	0.9	6.3		

Table 5.1.1 Maximum predicted concentrations of TSP at various receptors in the dispersion modelling study area

NOTES:

1 2

Bold values indicate predicted concentrations which exceed the corresponding ambient air quality objective.

*Only the Level A objective is shown as it is the most stringent

receptor types in the dispersion modelling study area with background						
	TSP ^a	PM ₁₀	PM _{2.5} ^b	Dustfall ^c		
Receptor Type	Exceedance (%)	Exceedance (%)	Exceedance (%)	Exceedance (%)		
Outside Dam site area	56.0	76.9	80.1	33.3		
Fort St. John	0.0	0.0	0.0	0.0		
Taylor	0.0	0.0	0.0	0.0		
Residence (Ground- truthed)	0.0	0.3	0.0	0.0		
Non-Residence (Ground-truthed)	0.0	14.0	20.0	0.0		
Unknown Building	0.0	0.0	0.0	0.0		
North Camp Site	1.4	21.4	38.7	0.0		
South Camp Site	0.0	0.0	1.3	0.0		
School	0.0	0.0	0.0	0.0		
Child Care	0.0	0.0	0.0	0.0		
Health Care	0.0	0.0	0.0	0.0		
Senior Care	0.0	0.0	0.0	0.0		

Table 5.1.2 Frequency of exceedance of Canada-wide Standards and BC objectives for receptor types in the dispersion modelling study area with background

NOTE:

1 2

a - comparison is made to BC Level A objective for TSP

b – relative to BC objective of 25 μ g/m³

c - refers to non-residential provincial objective of 2.9 mg/m²/day

3 5.1.2 PM₁₀

4 The maximum predicted 24-hour concentrations of PM₁₀ are presented in Table 5.1.3.

5 Without background, the provincial ambient air quality objective would be exceeded within

6 and outside the dam site area for the 24-hour averaging period. Exceedances were

7 predicted at one sensitive receptor location (North Camp Site), which is within the dam site

8 area (see Figure 5.1.4). The maximum concentration predicted outside the dam site area

9 occurs adjacent to the Wuthrich quarry but there are no known sensitive receptors in this

10 area.

11 When background is included, in addition to the locations with predicted exceedances

12 already mentioned, an exceedance was also predicted at one residence located within the

- 1 dam site area. In addition to the sensitive receptor locations indicated, exceedances were
- 2 also predicted at non-residential buildings in the vicinity of the Site C dam site. Figure 5.1.4
- 3 shows the maximum predicted concentration isopleths for 24-hour PM_{10.} The highest values
- 4 predicted outside the dam site area occur near Wuthrich quarry.
- 5 The frequency of predicted exceedances for each receptor type is indicated in Table 5.1.2.
- 6 Figure 5.1.5 shows the spatial distribution of predicted exceedance frequency over the
- 7 dispersion modelling study area. The one residence within the dam site area where an
- 8 exceedance was predicted only has one instance of exceedance. The maximum frequency
- 9 of exceedance predicted outside the dam site area was 76.9% and occurred in the vicinity
- 10 of the Wuthrich quarry.

11 Table 5.1.3 Maximum predicted concentrations of PM₁₀ at various receptors in the dispersion 12 modelling study area

Averaging period	24-1	nour				
BC Objective	50 μg/m³					
Receptor Type	Without background (µg/m ³)	With background (µg/m ³)				
Outside Dam site area	251	278				
Fort St. John	5.8	32				
Taylor	2.2	28				
Residence (Ground-truthed)	25	51				
Non-Residence (Ground-truthed)	41	67				
Unknown Building	2.1	28				
North Camp Site	64	90				
South Camp Site	20	47				
School	3.1	29				
Child Care	3.0	29				
Health Care	3.0	29				
Senior Care	2.3	29				

NOTES:

Bold values indicate predicted concentrations which exceed the corresponding ambient air quality objective.

13 **5.1.3 PM_{2.5}**

The maximum predicted concentrations of $PM_{2.5}$ are presented in Table 5.1.4. For the 24hour averaging period, compliance with both the provincial objective and the Canada-wide Standard for $PM_{2.5}$ is based on the 98th percentile concentration. Without background, maximum predicted concentrations exceeded both the provincial objective of 25 µg/m³ and Canada-wide Standard of 30 µg/m³ within and outside the dam site area for the 24-hour averaging period. Exceedances of the annual provincial objective of 8 µg/m³ were also predicted. Without background, exceedances were predicted at one sensitive receptor

- 1 location (North Camp Site), which is within the dam site area (see Figure 5.1.6). The
- 2 maximum concentration predicted outside the dam site area occurs adjacent to the
- 3 Wuthrich quarry. When background is included, in addition to the locations with
- 4 exceedances already mentioned, exceedances of the provincial 24-hour objective are also
- 5 predicted at the South Camp Site. In addition to the sensitive receptor locations indicated,
- 6 exceedances were also predicted at non-residential buildings in the vicinity of the Site C
- 7 dam site. Figure 5.1.6 shows the 98th percentile predicted concentration isopleths for 24-
- 8 hour PM_{2.5} and Figure 5.1.7 shows the maximum predicted concentration isopleths for
- 9 annual PM_{2.5.} The highest values outside the dam site area were predicted near Wuthrich
- 10 quarry.
- 11 The frequency of predicted exceedances of the 24-hour objective for each receptor type is
- 12 indicated in Table 5.1.2. Figure 5.1.8 shows the spatial distribution of predicted exceedance
- 13 frequency over the dispersion modelling study area. The maximum frequency of
- 14 exceedance predicted outside the dam site area was 80.1% and occurred in the vicinity of
- 15 the Wuthrich quarry.

Averaging period	24	4-hour ^a	Annual 8 μg/m3		
Canada-wide Standard//BC Ambient Objective	30 µg/m	13 / 25 µg/m3			
Receptor Type	Without background (µg/m3)	With background (μg/m3)	Without background (µg/m3)	With background (µg/m3)	
Outside dam site area	69	84	20	25	
Fort St. John	3.5	18	0.8	5.8	
Taylor	1.0	16	0.2	5.2	
Residence (ground- truthed)	9.1	24	2.3	7.3	
Non-Residence (ground- truthed)	22	37	5.9	11	
Unknown building	1.3	16	0.3	5.3	
North Camp Site	30	45	8.4	13	
South Camp Site	11	26	2.6	7.6	
School	1.5	16	0.3	5.3	
Child Care	1.6	17	0.3	5.3	
Health Care	1.2	16	0.2	5.2	
Senior Care	1.2	16	0.2	5.2	

16Table 5.1.4Maximum predicted concentrations of PM2.5 at various receptors in the
dispersion modelling study area. Values in red exceed BC objective.

NOTES:

a - based on annual 98th percentile value

Bold values indicate predicted concentrations which exceed the corresponding ambient air quality objective.

1 **5.1.4 Dustfall**

2 The maximum predicted deposition rates of dustfall for the 30-day averaging period are presented in Table 5.1.5. There are two provincial objectives presented. The lower (1.75 3 4 $mg/m^2/day$) is the objective for residential locations while the higher (2.9 mg/m²/day) is for 5 non-residential locations. Without background, the non-residential provincial ambient air 6 guality objective is not exceeded outside the dam site area. The maximum concentration predicted outside the dam site area occurs adjacent to the Wuthrich quarry (see Figure 7 8 5.1.9), but this local maximum does not cause any sensitive receptor site exceedances. 9 When background is included, exceedances were predicted to occur outside the dam site 10 area. No exceedances were predicted at sensitive receptors within or outside the dam site 11 area.

The frequency of predicted exceedances of the non-residential objective for each receptor type is indicated in Table 5.1.2. Figure 5.1.10 shows the spatial distribution of predicted exceedances of the non-residential objective over the dispersion modelling study area. The maximum frequency of exceedance predicted outside the dam site area was 33.3% or about 4 months of the year and occurred in the vicinity of the Wuthrich guarry.

17	Table 5.1.5	Maximum predicted deposition rate of dustfall at various receptors in the
18		dispersion modelling study area

30-day 1.75 mg/m²/day (residential) or 2.9 mg/m²/day (non-residential)			
2.5	3.3		
0.08	0.9		
0.03	0.8		
0.4	1.2		
0.6	1.4		
0.03	0.8		
0.8	1.6		
0.2	1.0		
0.04	0.8		
0.04	0.8		
0.03	0.8		
0.03	0.8		
	1.75 mg/m²/day (residential) or Without background (μg/m³) 2.5 0.08 0.03 0.4 0.6 0.03 0.8 0.2 0.04 0.04 0.03		

NOTES:

Bold values indicate predicted concentrations which exceed the non-residential (2.9 mg/m2/day) ambient air quality objective.

5.2 Nitrogen Dioxide, Sulphur Dioxide and Carbon Monoxide

2 The maximum predicted concentrations of NO_2 and NO_x are presented in Table 5.2.1, SO_2

3 are presented in Table 5.2.2 and CO is presented in Table 5.2.3. There is no difference in

- 4 concentrations of NO₂ and SO₂ if background is added, as the background value is 0 μ g/m³
- 5 (see Section 3.3.3 and Section 3.3.4). For CO maximum concentrations with and without
- 6 background are included in Table 5.2.3. There are no exceedances predicted anywhere
- 7 within the dispersion modelling study area for any of the averaging periods for which an
- ambient objective is defined for NO_2 , SO_2 and CO (see Figures 5.2.1, 5.2.2 and 5.2.3,
- 9 respectively, for maximum predicted concentrations). The maximum concentrations
- 10 predicted outside the dam site area for NO_2 , SO_2 and CO are all found near Wuthrich
- 11 quarry.
- 12

13Table 5.2.1Maximum predicted concentrations of NO2 and NOx at various receptors in the14dispersion modelling study area

Averaging period	1-hour 400 μg/m ³ With background (μg/m ³)		24-hour 200 μg/m ³ With background (μg/m ³)		Annual 60 μg/m ³ With background (μg/m ³)	
Most Stringent* Ambient Objectives for NO ₂						
Receptor Type						
and the state of t	NO ₂	NO _x	NO ₂	NO _x	NO ₂	NO _x
Outside dam site area	306	1,794	78	400	45	73
Fort St. John	145	181	27	27	3.3	3.3
Taylor	63	63	8.0	8.0	1.0	1.0
Residence (ground-truthed)	170	436	44	61	8.2	8.2
Non-Residence (ground-truthed)	182	561	49	115	24	24
Unknown building	81	81	10	11	1.4	1.4
North Camp Site	194	676	54	165	26	26
South Camp Site	165	388	45	70	13	13
School	106	106	12	12	1.3	1.3
Child Care	109	109	13	13	1.4	1.4
Health Care	87	87	10	10	0.9	0.9
Senior Care	73	73	10	9.5	1.0	1.0

15 **NOTES**:

16 * Most stringent Canada Wide Standard for each averaging period as shown in Table 1.1.1.

modelling study area				
Averaging period	1-hour	24-hour	Annual	
BC Level A Objective	450 μg/m ³	160 μg/m ³	25 μg/m ³	
Receptor Type	With background (µg/m³)	With background (µg/m ³)	With background (µg/m³)	
Outside dam site area	75	21	1.6	
Fort St. John	1.6	0.1	0.01	
Taylor	0.2	0.05	0.003	
Residence (ground-truthed)	3.3	0.4	0.03	
Non-Residence (ground-truthed)	4.5	0.5	0.06	
Unknown building	0.5	0.06	0.004	
North Camp Site	14	1.5	0.1	
South Camp Site	1.1	0.2	0.03	
School	0.7	0.1	0.005	
Child Care	0.7	0.1	0.005	
Health Care	0.5	0.05	0.003	
Senior Care	0.3	0.04	0.004	

1Table 5.2.2Maximum predicted concentrations of SO2 at various receptors in the dispersion2modelling study area

modelling study area					
Averaging period	1-hour		8-hour		
BC Level A Objective	14,300 µg/m³		5,500 μg/m³		
Receptor Type	Without background (µg/m³)	With background (µg/m³)	Without background (µg/m³)	With background (µg/m³)	
Outside dam site area	2,733	2,962	1,918	2078	
Fort St. John	96	325	31	191	
Taylor	29	258	10	170	
Residence (ground- truthed)	193	422	79	240	
Non-Residence (ground-truthed)	342	571	120	280	
Unknown building	45	274	13	173	
North Camp Site	554	783	165	326	
South Camp Site	192	421	80	241	
School	48	277	16	177	
Child Care	49	278	18	178	
Health Care	39	268	13	174	
Senior Care	32	261	10	171	

1Table 5.2.3Maximum modelled concentrations of CO at various receptors in the dispersion2modelling study area

3 6 CLOSURE

4 RWDI AIR Inc. has prepared this report for the sole benefit of BC Hydro for the purpose of

5 documenting baseline conditions in anticipation of an environmental assessment under the

6 British Columbia Environmental Assessment Act and the Canadian Environmental

7 Assessment Act. The report may not be relied upon by any other person or entity, other

8 than for its intended purposes, without the express written consent of RWDI AIR Inc. and

9 BC Hydro. Any use of this report by a third party, or any reliance on decisions made based

10 upon it, are the responsibility of such third parties.

11 The information provided in this report was compiled from existing documents and data

12 provided by BC Hydro and by field data compiled by RWDI AIR Inc. This report represents

13 the best professional judgment of the authors at the time of its preparation. RWDI AIR Inc.

- 14 reserves the right to modify the contents of this report, in whole or in part, to reflect any new
- 15 information that becomes available. If any conditions become apparent that differ
- 16 significantly from our understanding of conditions as presented in this report, we request
- 17 that we be notified immediately to re-evaluate the conclusions provided herein.

- 1 BC Hydro has the right to reproduce, use and rely upon this report for proper purposes in
- 2 planning, operating and maintaining the electrical generation, transmission and distribution
- 3 system in the Province of British Columbia, including, without limitation, the right to deliver
- 4 this report to regulatory authorities in support of or in response to regulatory inquiries and
- 5 proceedings, including environmental assessment.
- 6 Respectfully submitted by:
- 7 RWDI AIR Inc.

- 8
- 9
- 10 Lead Author:
- 11 Jeff Lundgren, M.Sc.
- 12 Technical Director
- 13

Reyching

- 14
- 15
- 16 Reviewer:
- 17 Christian Reuten, Ph.D., ACM
- 18 Senior Scientist
- 19

20

Reviewer: David Chadder, Hon. B.Sc., QEP Principal/Senior Consultant

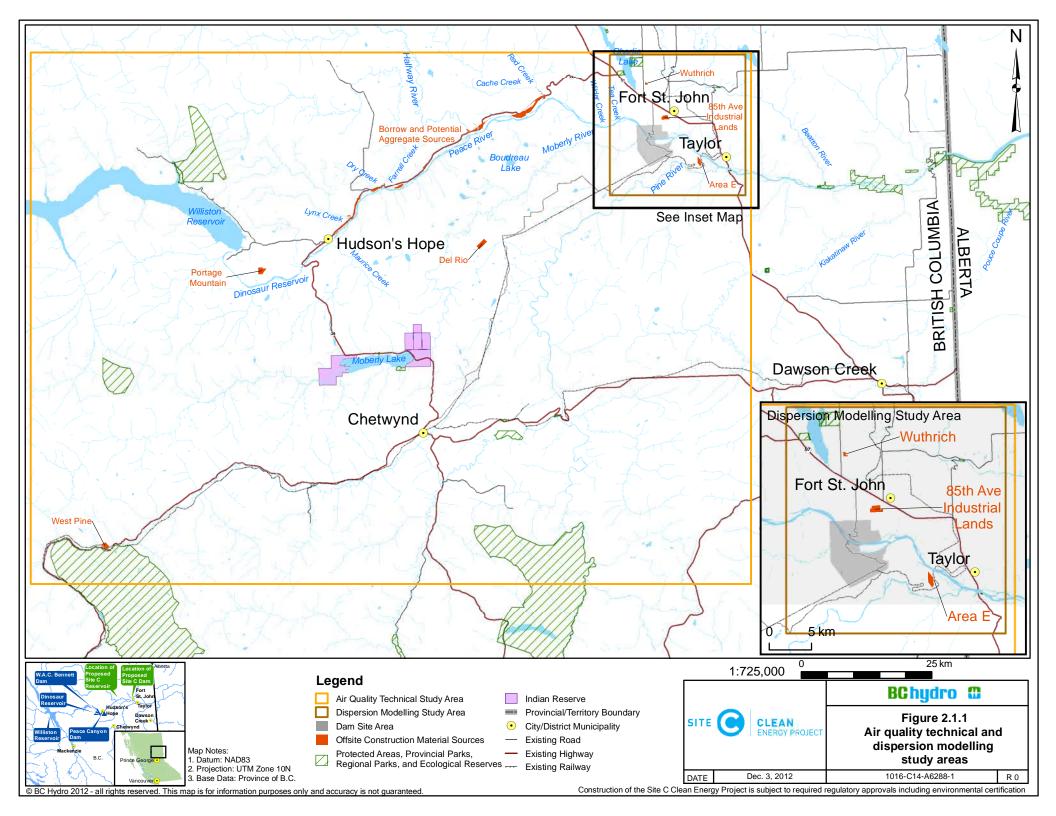
Reviewer: Brian Sulley, B.A.Sc., P.Eng. Senior Specialist

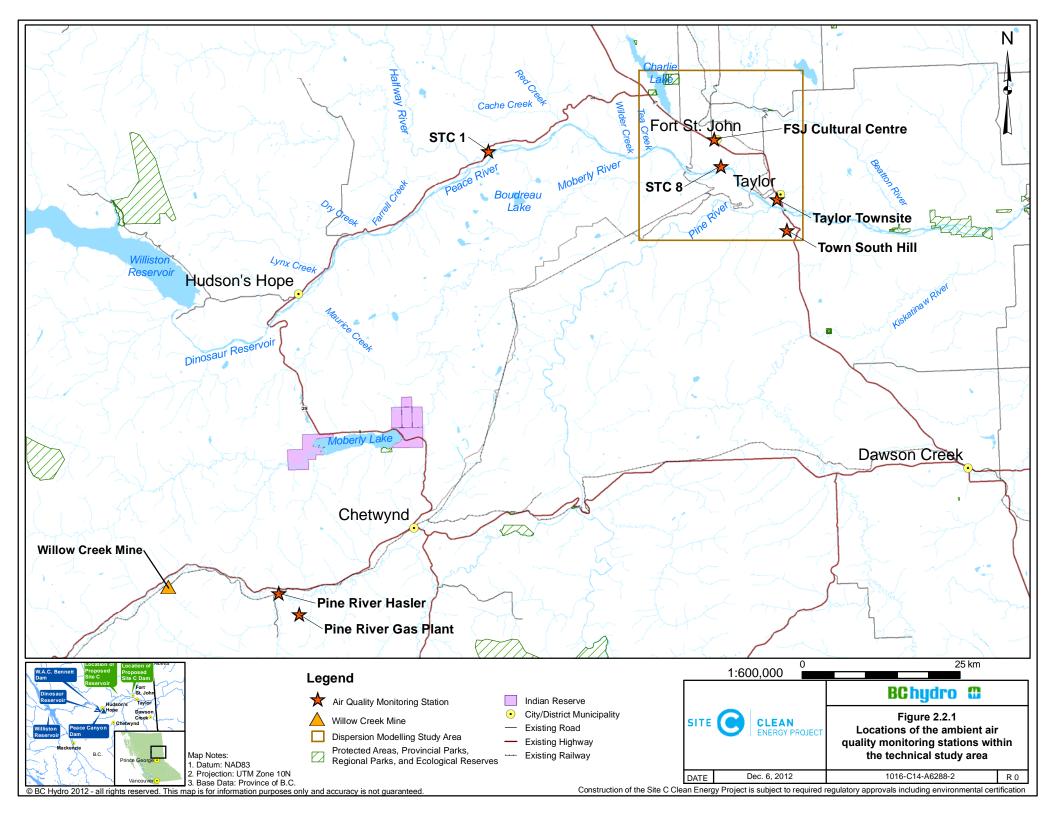
7 REFERENCES 1

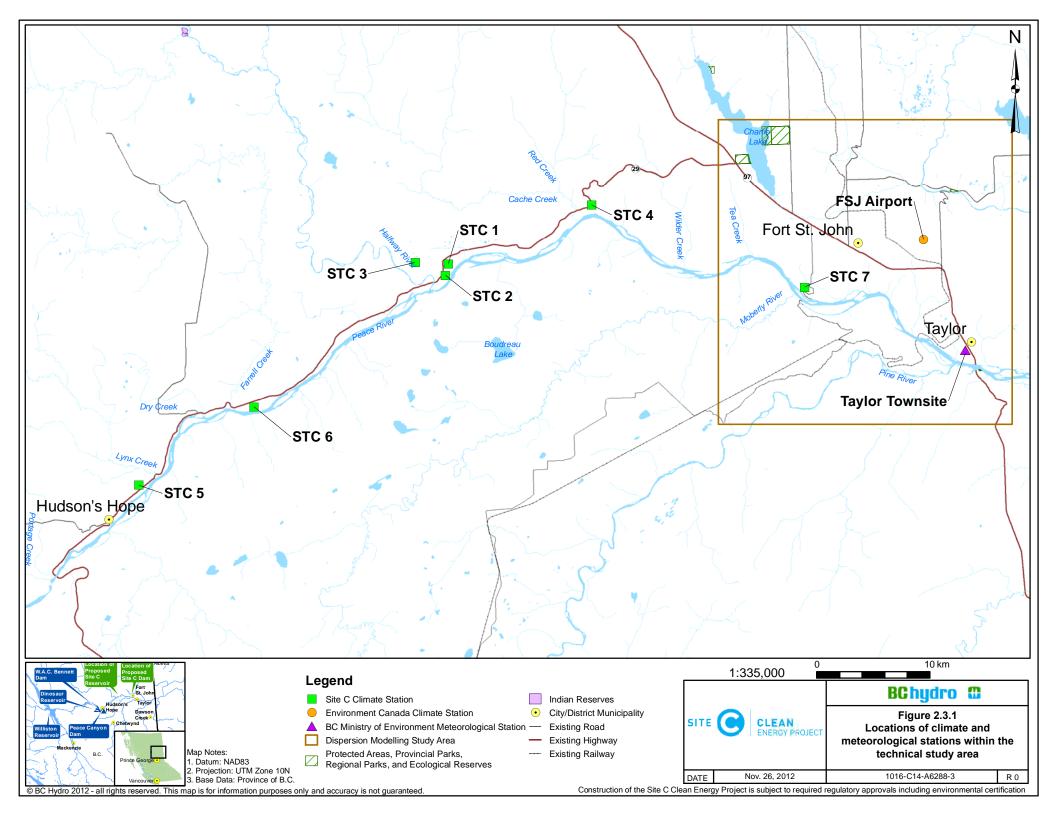
2	Agriculture and Agri-Food Canada. Canada Center for Remote Sensing.	
---	---	--

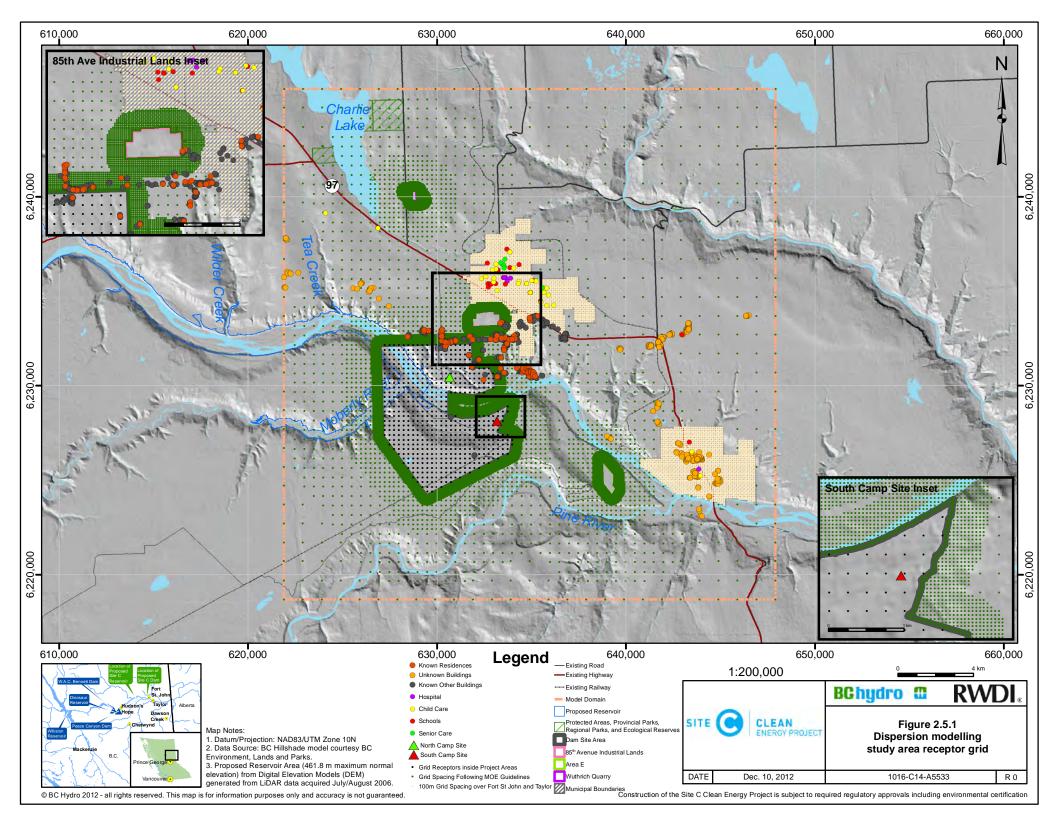
- 3 AGSolutions LLC, 2012. Online:
- 4 http://www.wasteoilboiler.net/page/page/waste oil burning facts.htm (Accessed July 2012).
- 5 ASTER GDEM, 2011. Ministry of Economy, Trade, and Industry (METI) of Japan and the United 6 States National Aeronautics and Space Administration (NASA) 7
 - (http://www.ersdac.or.jp/GDEM/E/3.htm)
- 8 Air & Waste Management Association. 2000. Air Pollution Engineering Manual, Second Edition. 886 9 pp. ISBN: 0-471-33333-6.
- 10 British Columbia Lung Association. 2005. State of the Air in British Columbia: 2005. Vancouver, BC. 11 16 pp.
- 12 British Columbia Ministry of Water, Land and Air Protection Water, Air and Climate Change Branch. 13 2004. 2000 British Columbia Emissions Inventory of Criteria Air Contaminants: Methods and 14 Calculations. (Revised June 2005) Victoria, BC.
- 15 British Columbia Ministry of Environment (BCMOE). 2000. Emission Inventory.
- 16 BCMOE.2008. Guidelines for Air Quality Dispersion Modelling in British Columbia. Environmental 17 Protection Division. Environmental Quality Branch, Air Protection Section. Victoria, BC. 152 18 pp.
- 19 BCMOE 2009b. Air Quality Objectives and Standards. 2 pp.
- 20 BCMOE 2012a. Data provided by Warren McCormick in July 2012.
- 21 BCMOE 2012b. BC Air Data Archive Website. Online: http://envistaweb.env.gov.bc.ca/ (Accessed 22 June 2012).
- 23 Canadian Council of Ministers of the Environment. 2006. Canada-wide Standards for Particulate 24 Matter and Ozone. Five Year Report: 2000-2005.
- 25 Canadian Digital Elevation Data, 2011. Geobase. Online: http://www.geobase.ca (Accessed July 26 2012)
- 27 Clean Air Strategic Alliance Data Warehouse 2012. Online: http://www.casadata.org/ (Accessed 28 June 2012).
- 29 California Environmental Protection Agency Air Resources Board 2009. CEIDARS database.
- 30 Cheng, L., H.S. Sandhu, R.P. Angle, K.M. McDonald, and R.H. Myrick. 2000. Rural particulate 31 matter in Alberta, Canada. Atmospheric Environment 34, 3365-3372.
- 32 The Chamber of Shipping. 2007. BC Ocean-Going Vessel Emissions Inventory Report.
- 33 County of San Diego Air Pollution Control District. 1998.
- 34 http://www.sdapcd.org/toxics/emissions/trpts/trpts1.pdf
- 35 Desert Research Institute. 2000. Reconciling Urban Fugitive Dust Emissions Inventory and Ambient 36 Source Contribution Estimates: Summary of Current Knowledge and Needed Research. 240 37 pp.
- 38 Earth Tech. 2000a. A User's Guide for the CALMET Meteorological Model (Version 5). 332 pp.

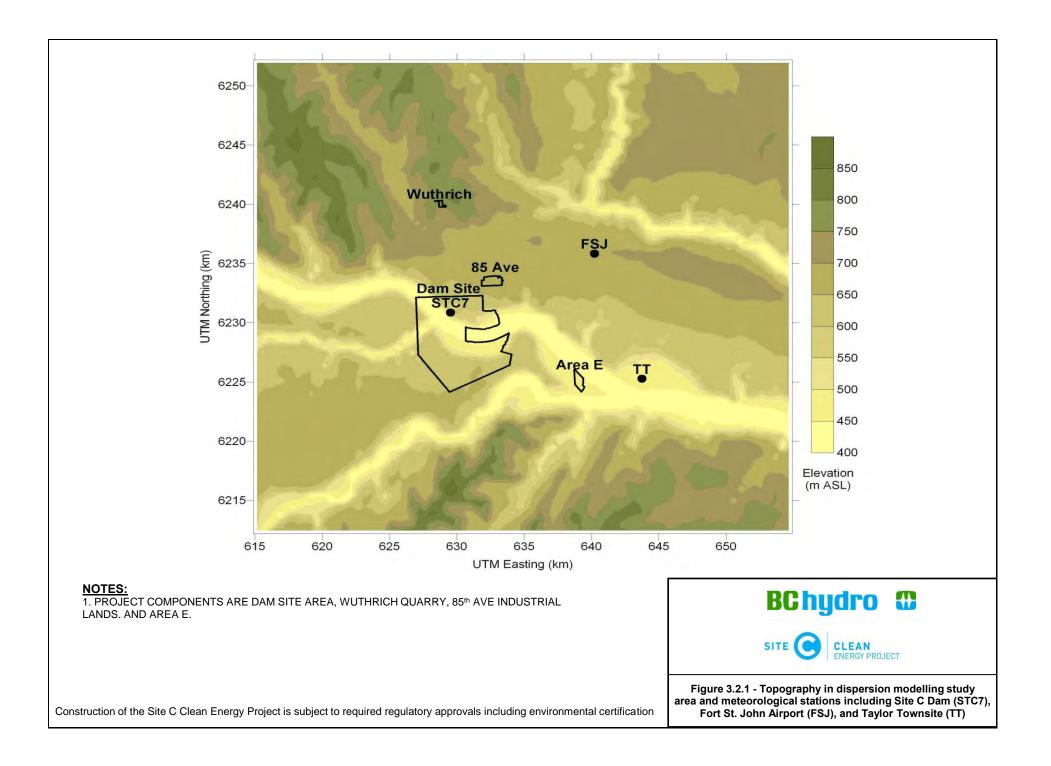
1	Earth Tech. 2000b. A User's Guide for the CALPUFF Dispersion Model (Version 5). 521 pp.
2	Environment Canada. 2006. Criteria Air Contaminants Emissions Inventory 2002 Guidebook.
3	Environment Canada. 2012. Environment Canada's National Pollutant Release Inventory.
4	Environment Canada. 2012b. Canadian Climate Normals or Average 1971-2000. Online:
5	_http://climate.weatheroffice.gc.ca/climate_normals/index_e.html (Accessed May 2012)
6	Environment Canada. 2012c. Sulphur in Diesel Fuel Regulation. Online:
7	http://www.ec.gc.ca/energie-energy/default.asp?lang=En&n=7A8F92ED-1 (Accessed May
8	2012)
9 10	National Centre for Environmental Protection. 2011. North American Regional Reanalysis meteorological data.
11 12	National Pollutant Release Inventory. 2010. Online: http://www.ec.gc.ca/inrp-npri/ (Accessed July 2012).
13	POSTEL Thematic Centre Land Cover Database. 2011. POSTEL. Online:
14	http://postel.mediasfrance.org/ (Accessed July 2012)
15	RWDI AIR Inc. (RWDI). 2012. Site C Clean Energy Project – Technical Data Report: Microclimate.
16	Document Number 06-110
17 18	San Joaquin Valley Air Pollution Control District. 2012. <u>http://www.valleyair.org/busind/draft-policies/DraftAggregatepolicy_Rev6.pdf</u>
19	SI Metric. 2011. Online: http://www.simetric.co.uk/si_materials.htm (Accessed January 2012)
20	Tombach, Ivar and Pat Brewer. 2005. BART Modeling Protocol for VISTAS.
21	US EPA, 1980. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1:
22	Stationary Point and Area Sources. Section 13.3: Explosives Detonation. 5 pp.
23	US EPA, 1992. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1:
24	Stationary Point and Area Sources. Section 2.5: Open Burning. 19 pp.
25	US EPA. 1995. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1:
26	Stationary Point and Area Sources. Section 13.2.3: Heavy Construction Operations. 7 pp.
27	US EPA. 1996. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1:
28	Stationary Point and Area Sources. Section 1.11: Waste Oil Combustion. 9 pp.
29	US EPA. 1998. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1:
30	Stationary Point and Area Sources. Section 11.9: Western Surface Coal Mining. 14 pp.
31	US EPA. 2004a. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1:
32	Stationary Point and Area Sources. Section 11.19.2: Crushed Stone Processing and
33	Pulverized Mineral Processing. 17 pp.
34	US EPA. 2003. Appendix W to Part 51 – Guideline on Air Quality Models. July 2003 Edition.
35 36	US EPA 2004b. Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling – Compression-Ignition. 135 pp.
37	US EPA. 2004c. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1:
38	Stationary Point and Area Sources. Section 11.1: Hot Mix Asphalt Plants. 63 pp.

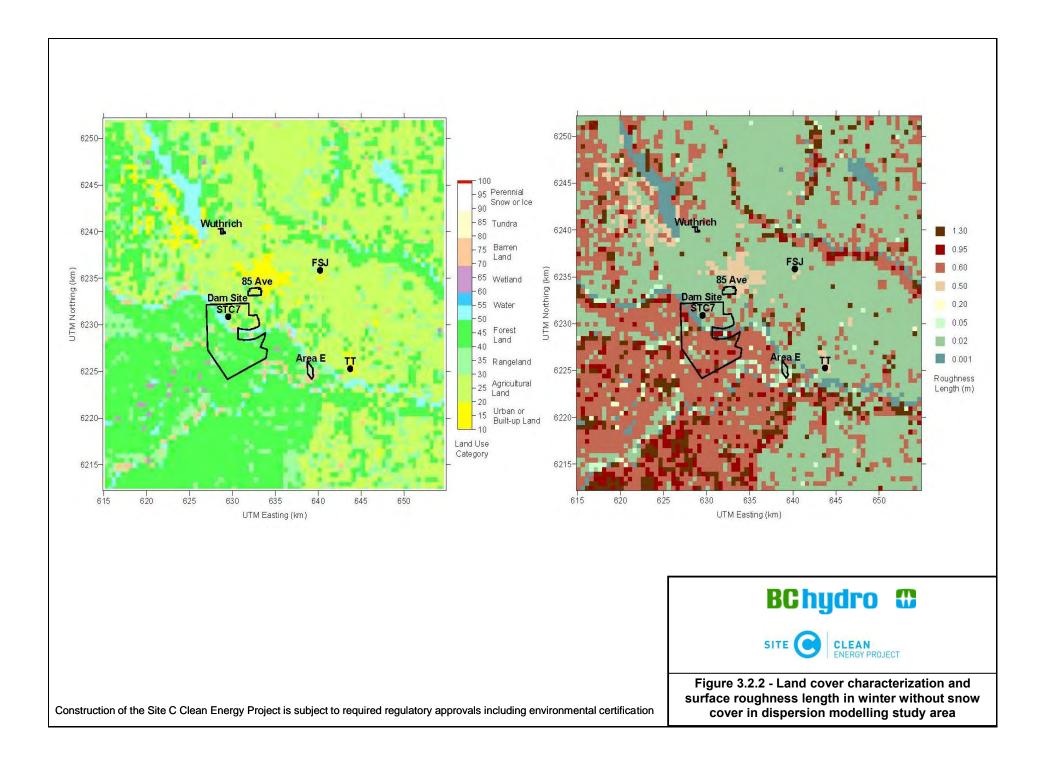

1 2 3	US EPA. 2006a. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1: Stationary Point and Area Sources. Section 13.2.4: Aggregate Handling and Storage Piles. 6 pp.				
4 5		Edition Compilation of Air Pollutant Emission Factors. Volume 1: rea Sources. Section 11.12: Concrete Batching. 14 pp.			
6 7		Edition Compilation of Air Pollutant Emission Factors. Volume 1: Area Sources. Section 13.2.2: Unpaved Roads. 20 pp.			
8 9		1. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1: onary Point and Area Sources. Section 13.2.1: Paved Roads. 15 pp.			
10 11	•	05. Application for an Environmental Assessment Certificate for the ction 11: Air Quality. 113 pp.			
12 13	•	stern Coal Corporation. 2010. Technical Assessment Report: 2010 Application for Amendment to Willow Creek Mine, Air Permit PA-17043. 99 pp.			
14 15		C. David, 2000: Mountain Meteorology. Fundamentals and Applications. Oxford /ersity Press, N. Y., USA, 355 pp.			
16 17		/ichers Stanek et al. 2010. A Review of the Current State of Science for Health Effects of Particulate Matter. EM, Air and Waste Management Association.			
18	Western Regional Air Partnership. 2006. Fugitive Dust Handbook.				
19 20	Zhang et al. 2002. Modelling gaseous dry deposition in AURAMS: a unified regional air quality modelling system. Atmospheric Environment Vol. 36. pp 537-560.				
21 22					
23	Source	Format			
24	Personal Communications	Dennis Fudge. BCMOE. 2012. Personal communication.			
25	Personal Communications	W.G. Nickling. Nickling Environmental Ltd. 2012. Personal communication.			
26					

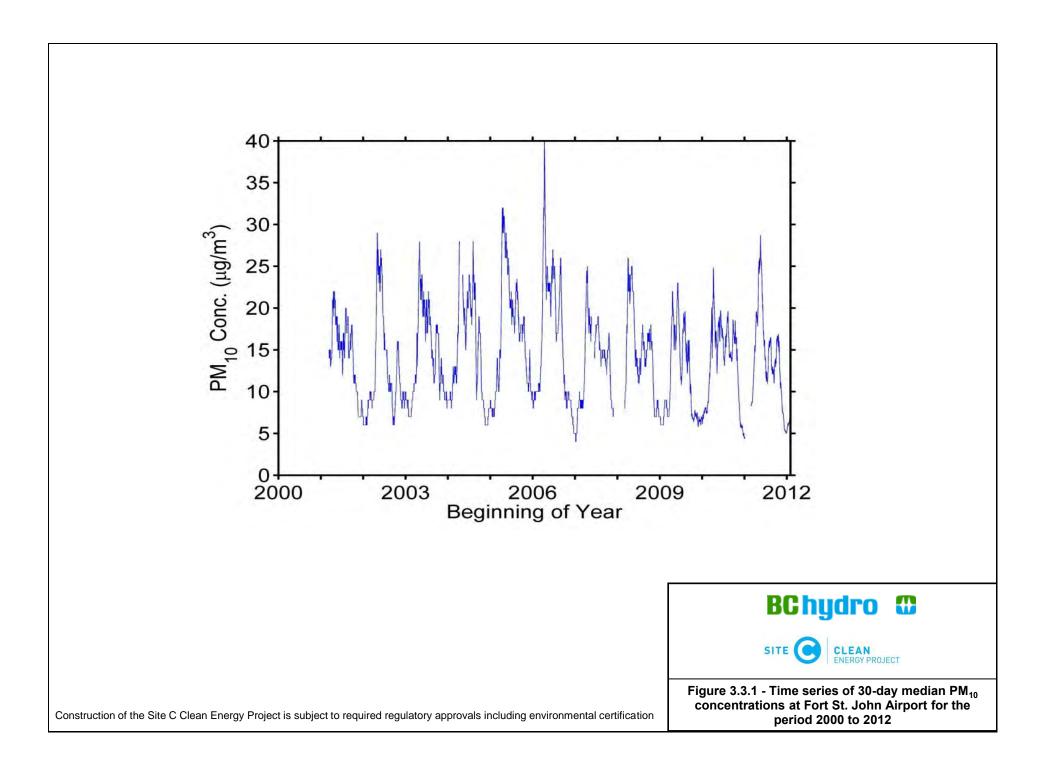

Volume 2 Appendix L Air Quality Technical Data Report

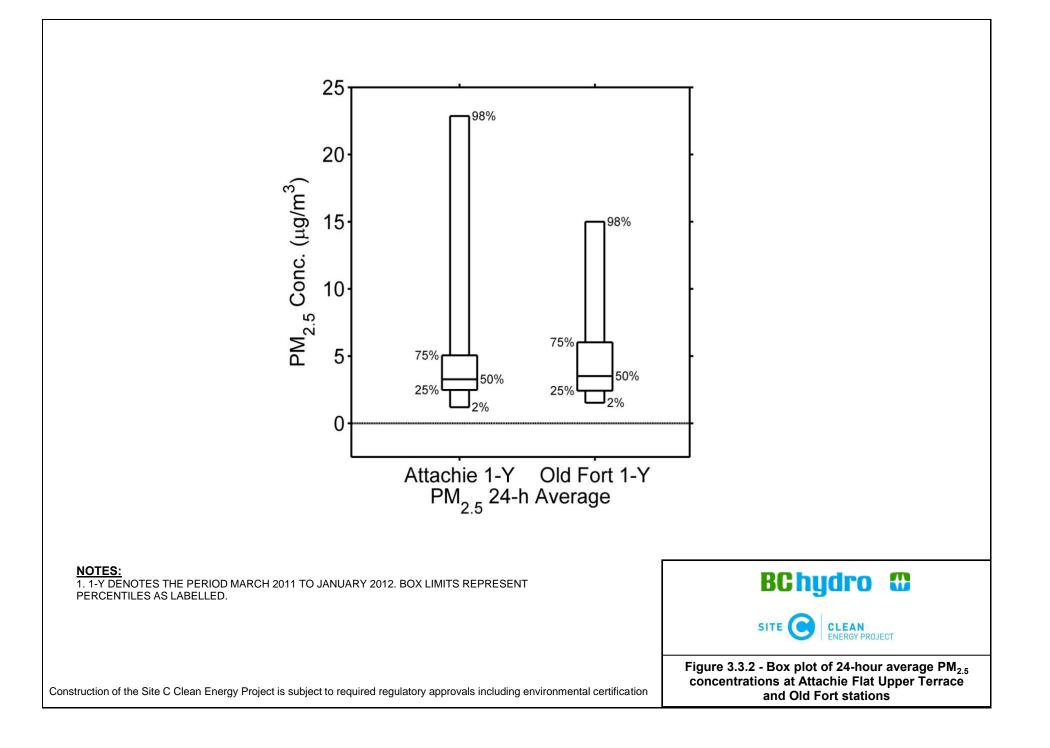

1 8 FIGURES

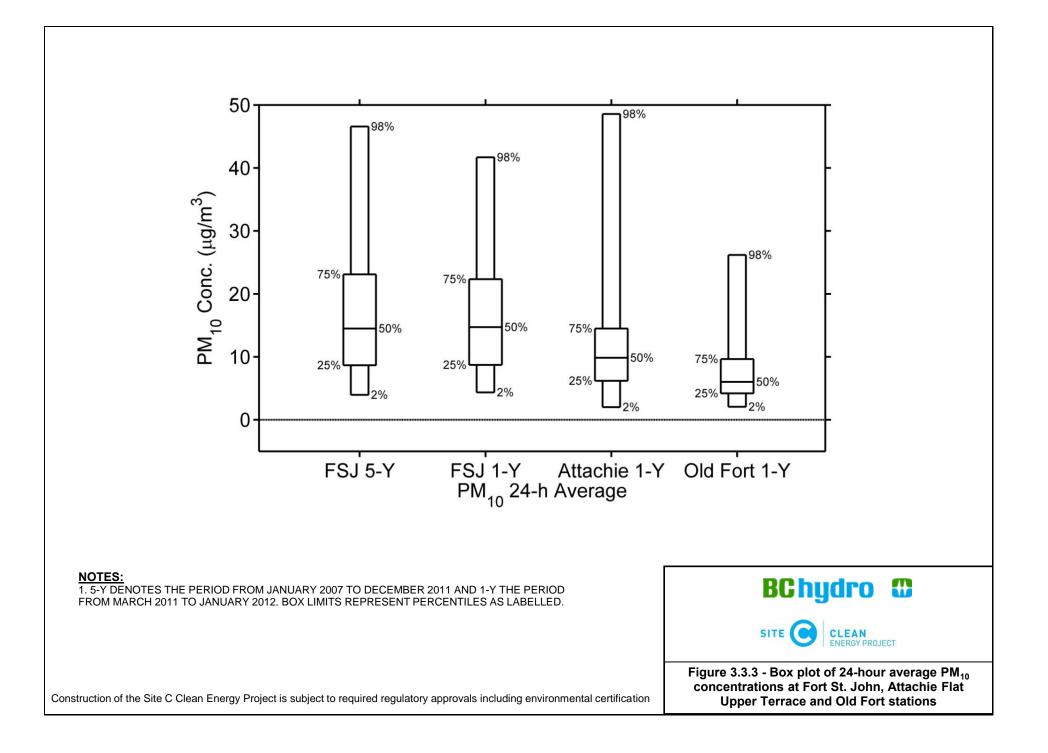

2 Please see the following pages.

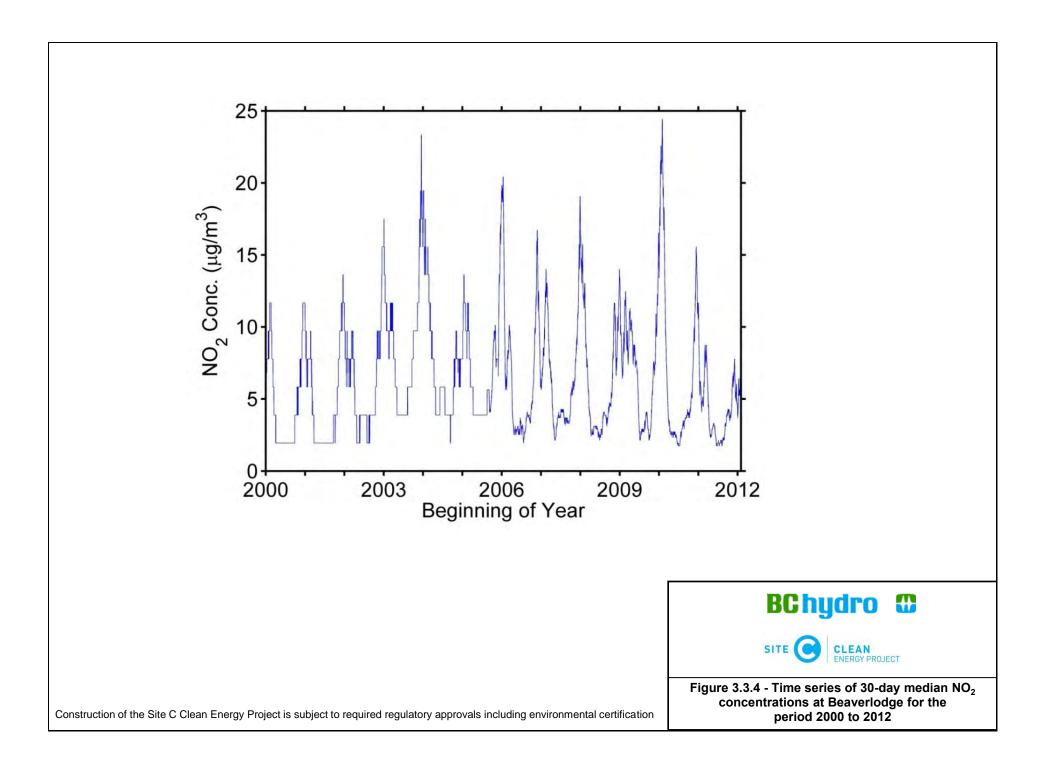

3

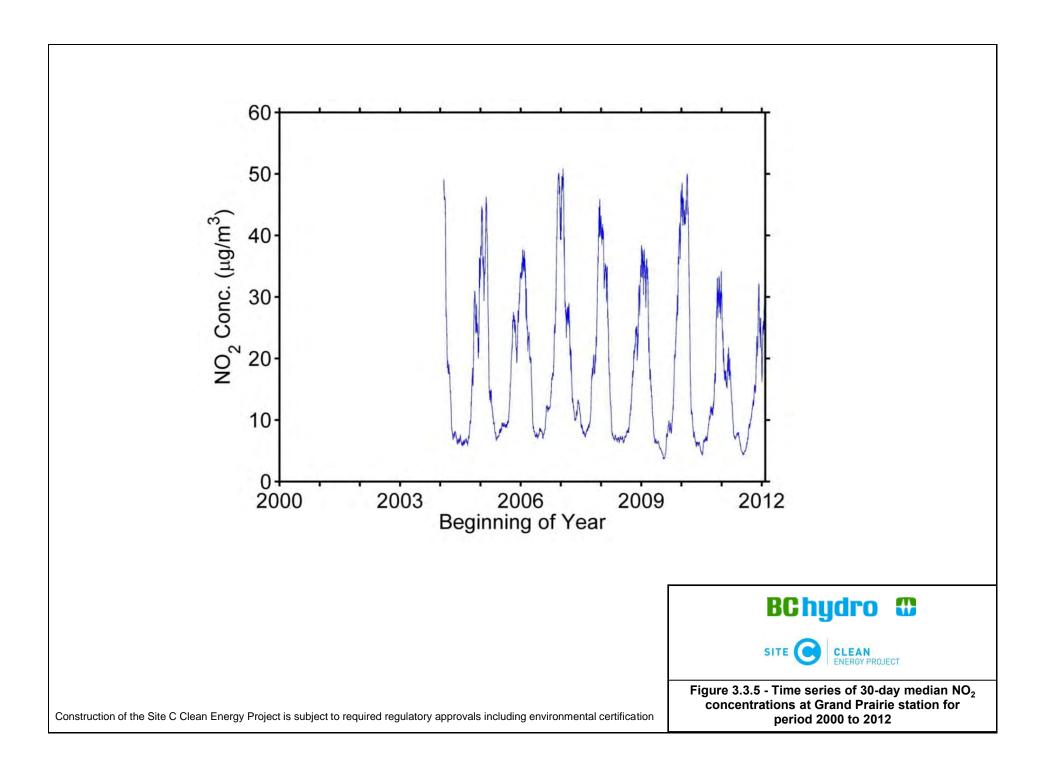


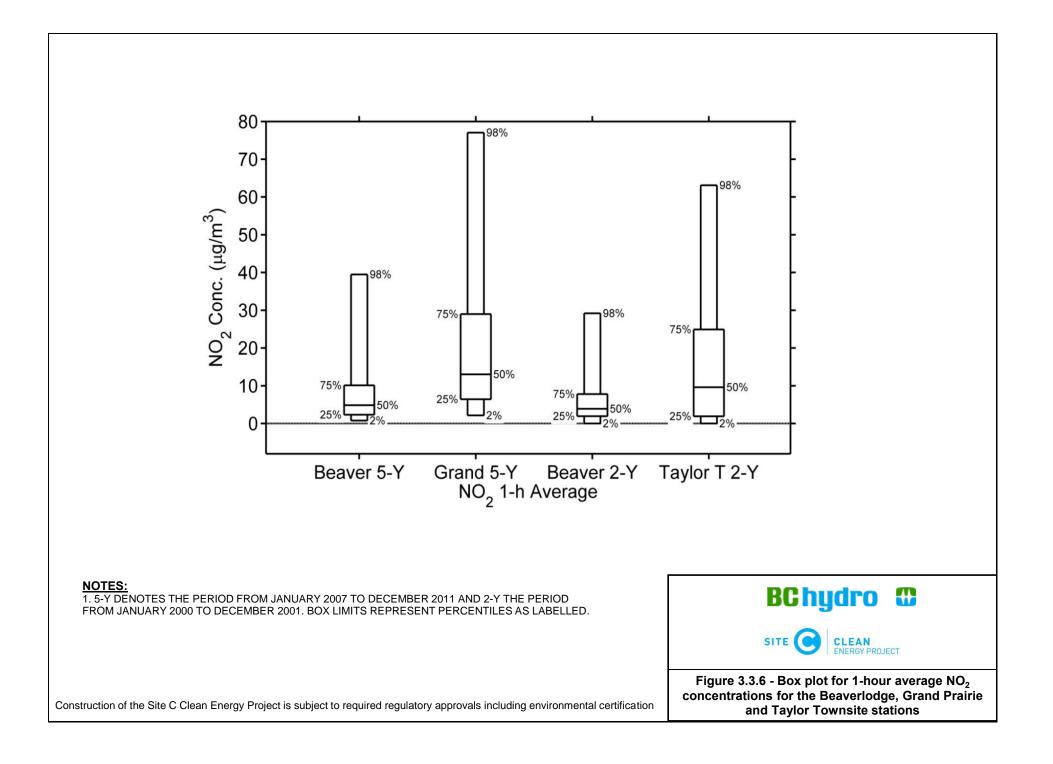




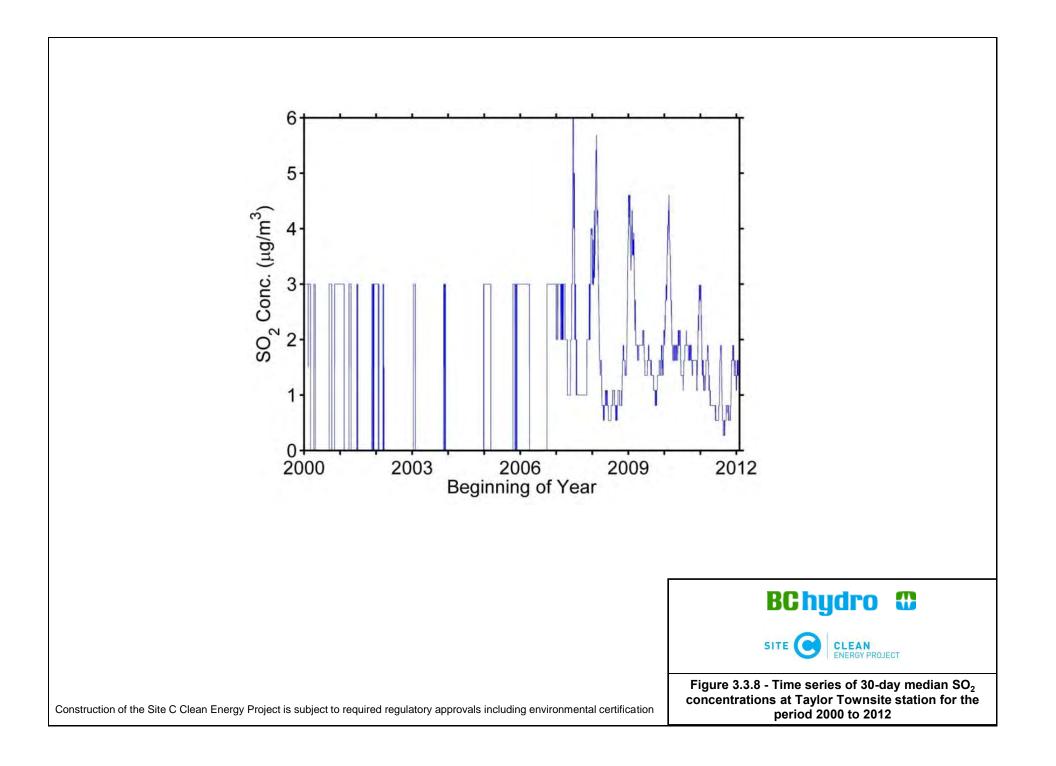


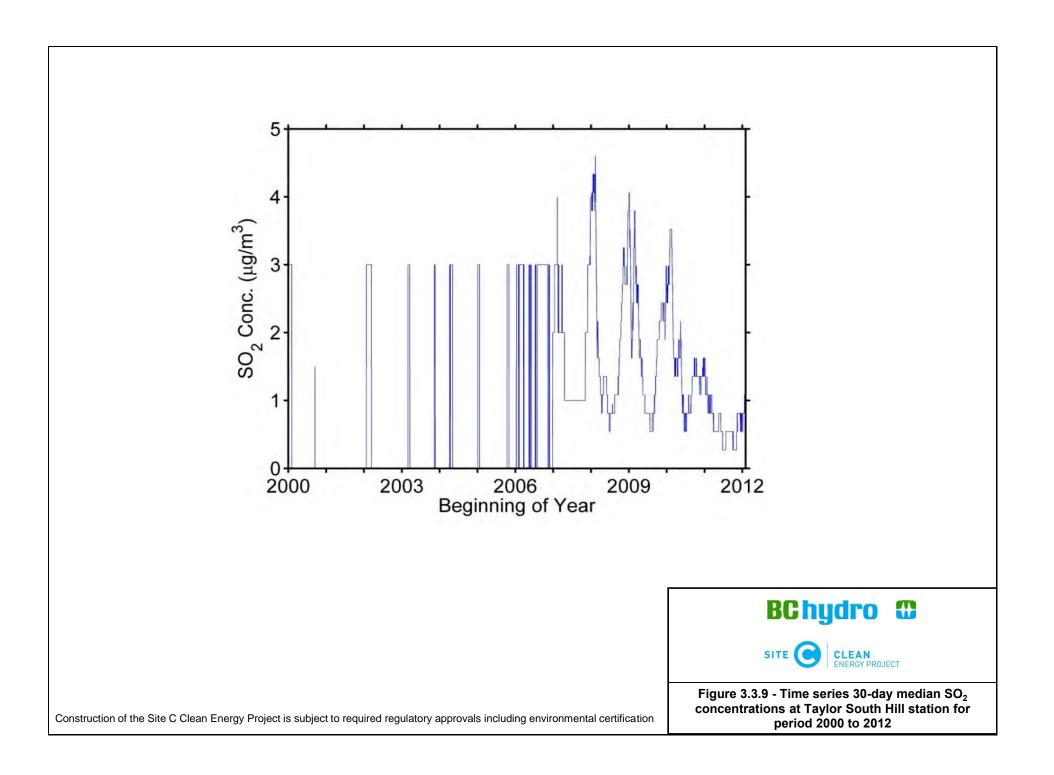


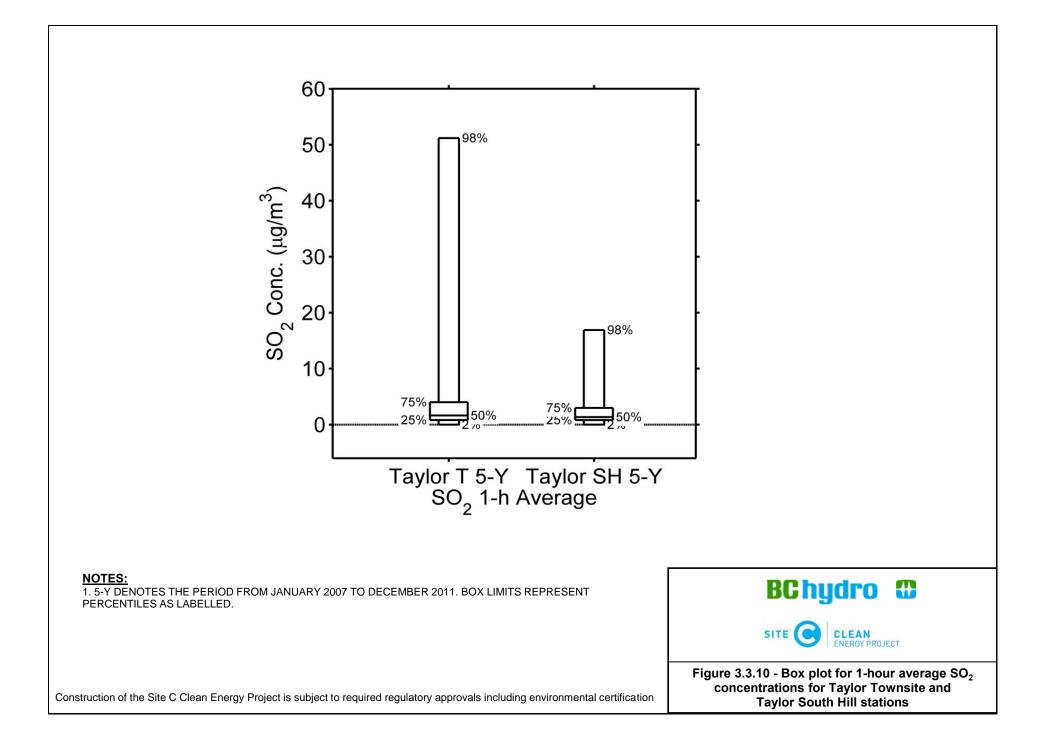


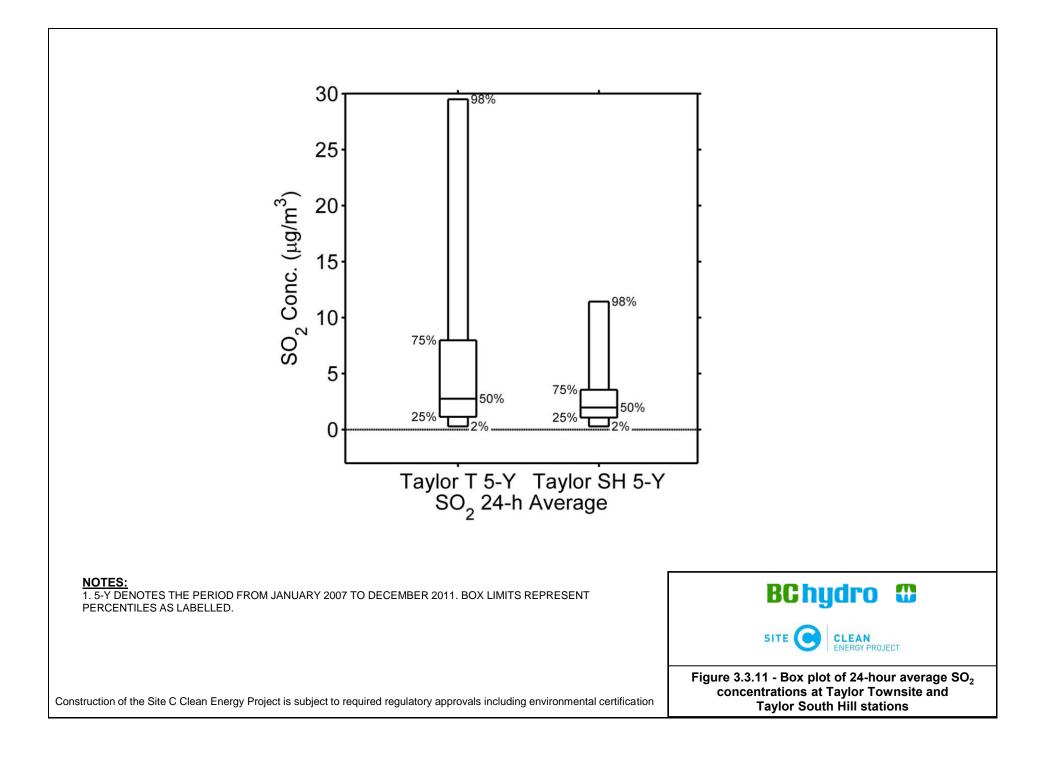


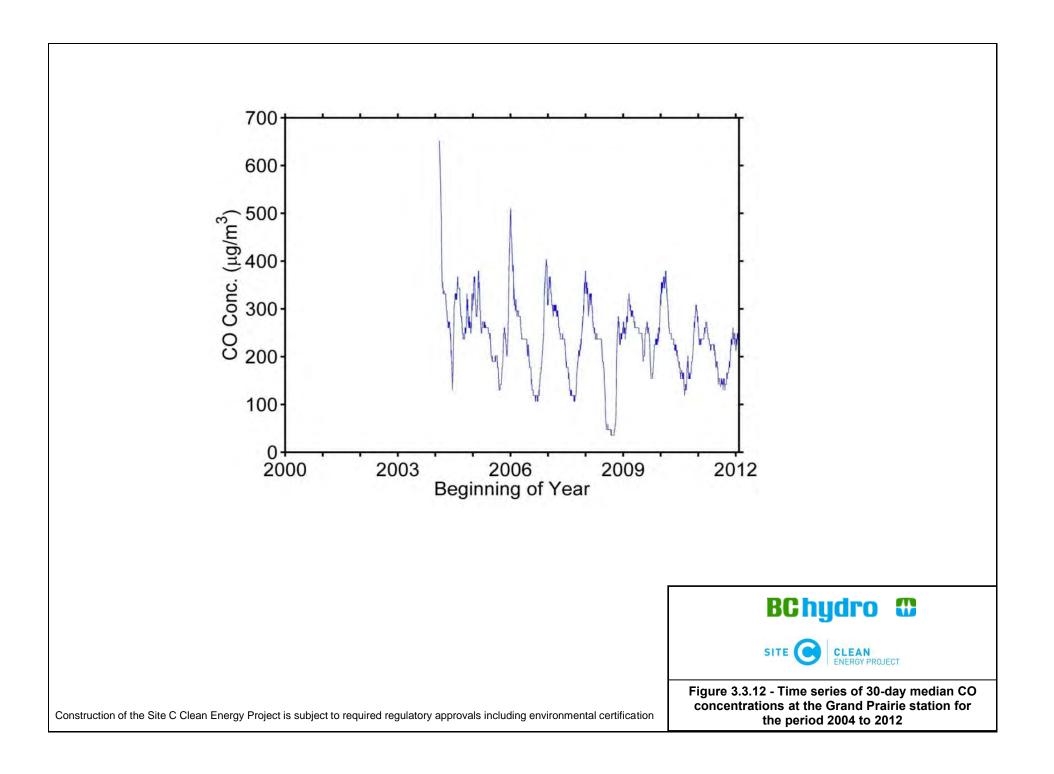


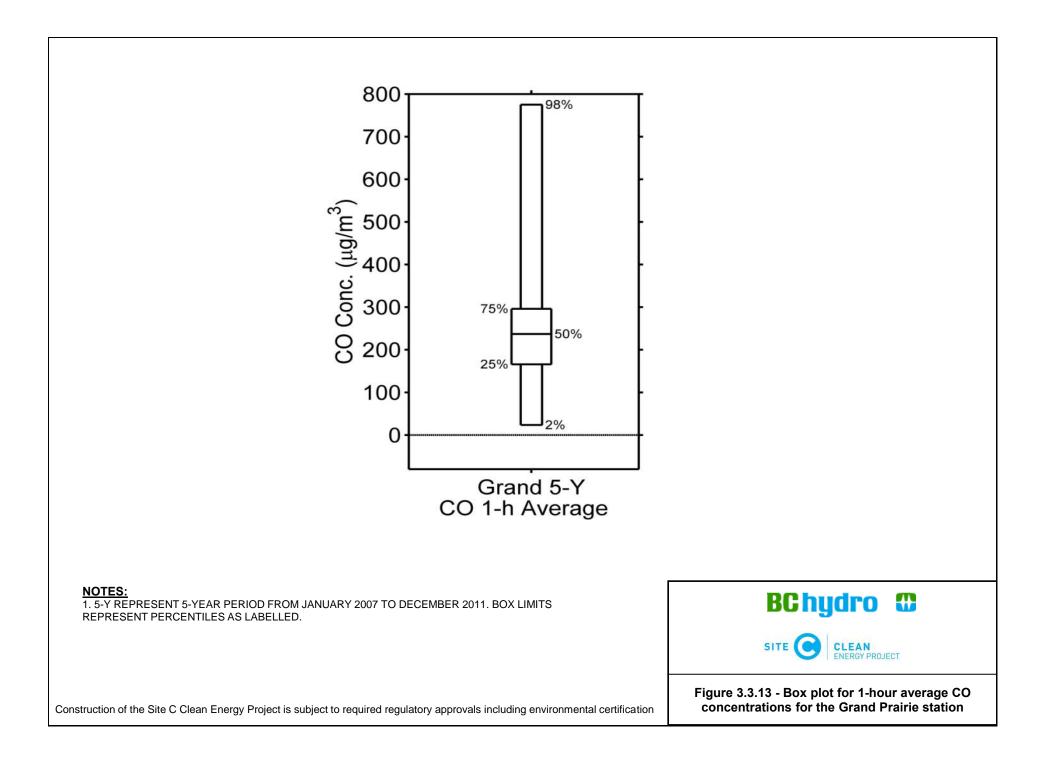


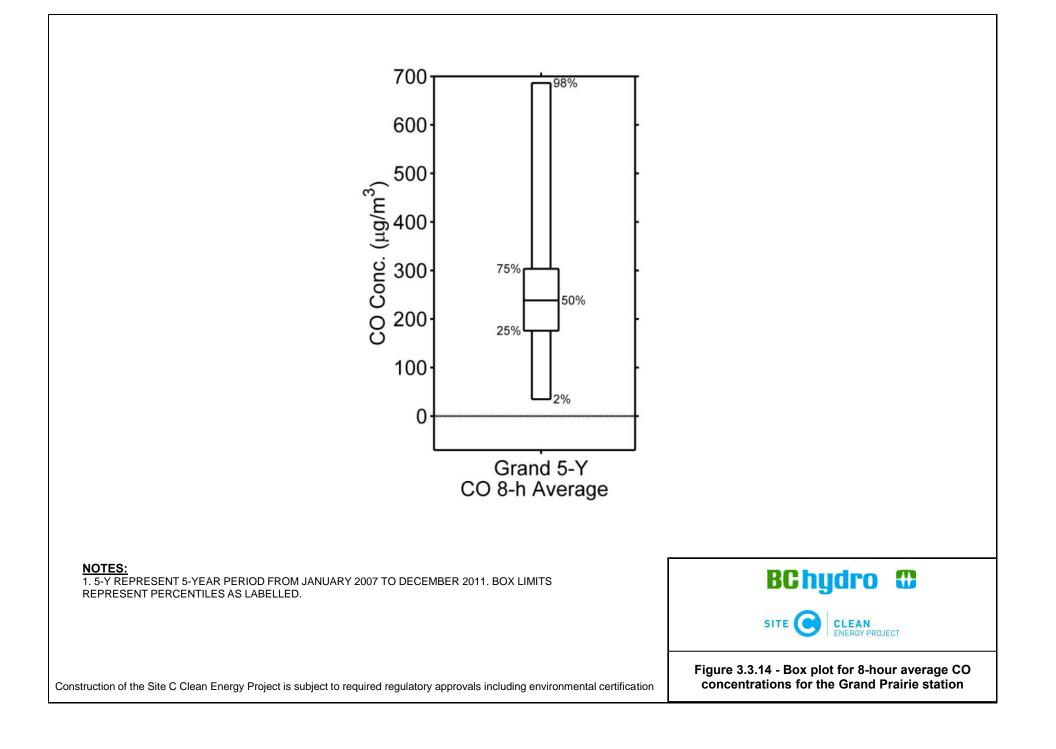


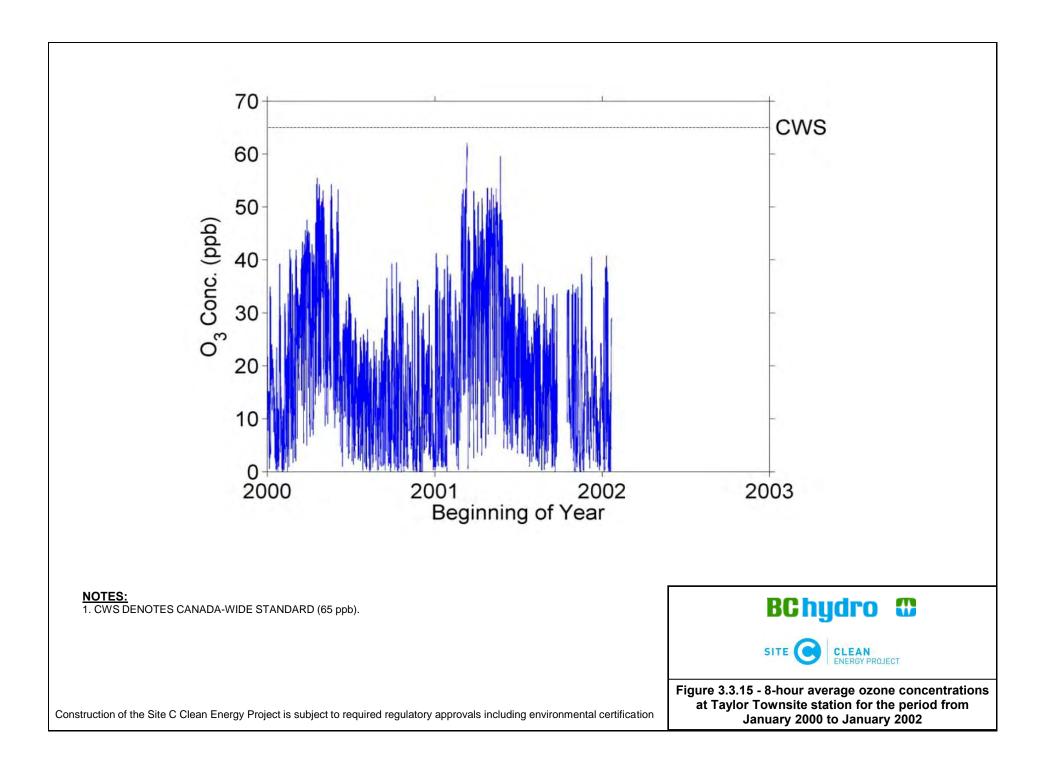


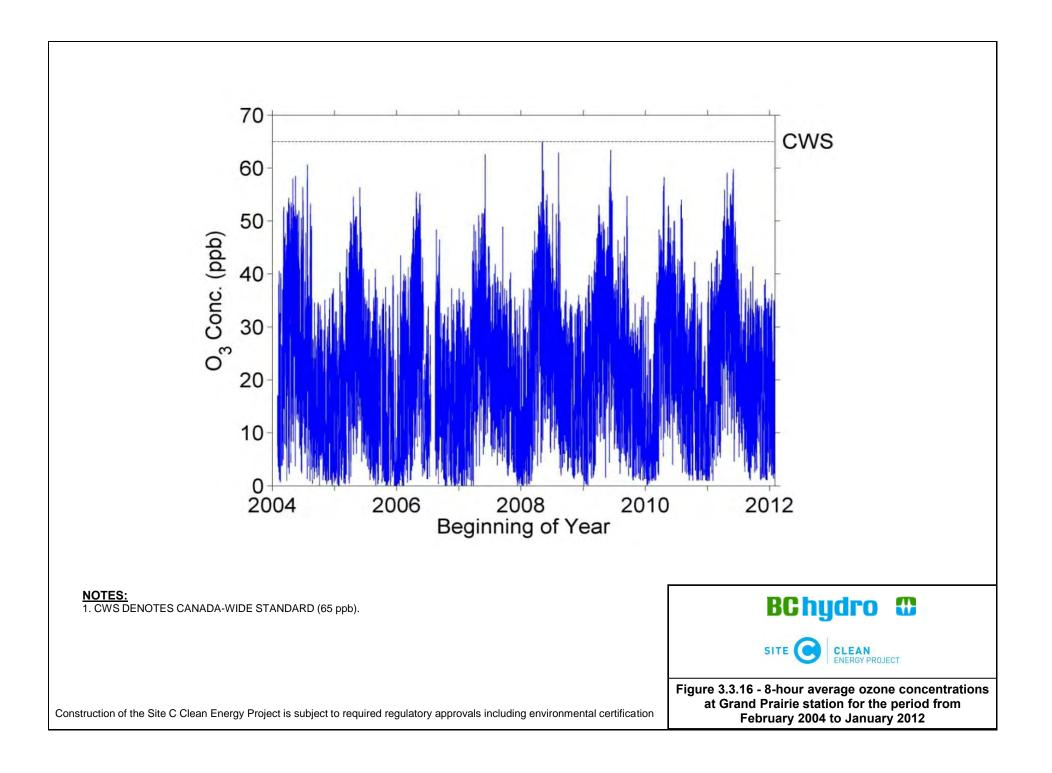


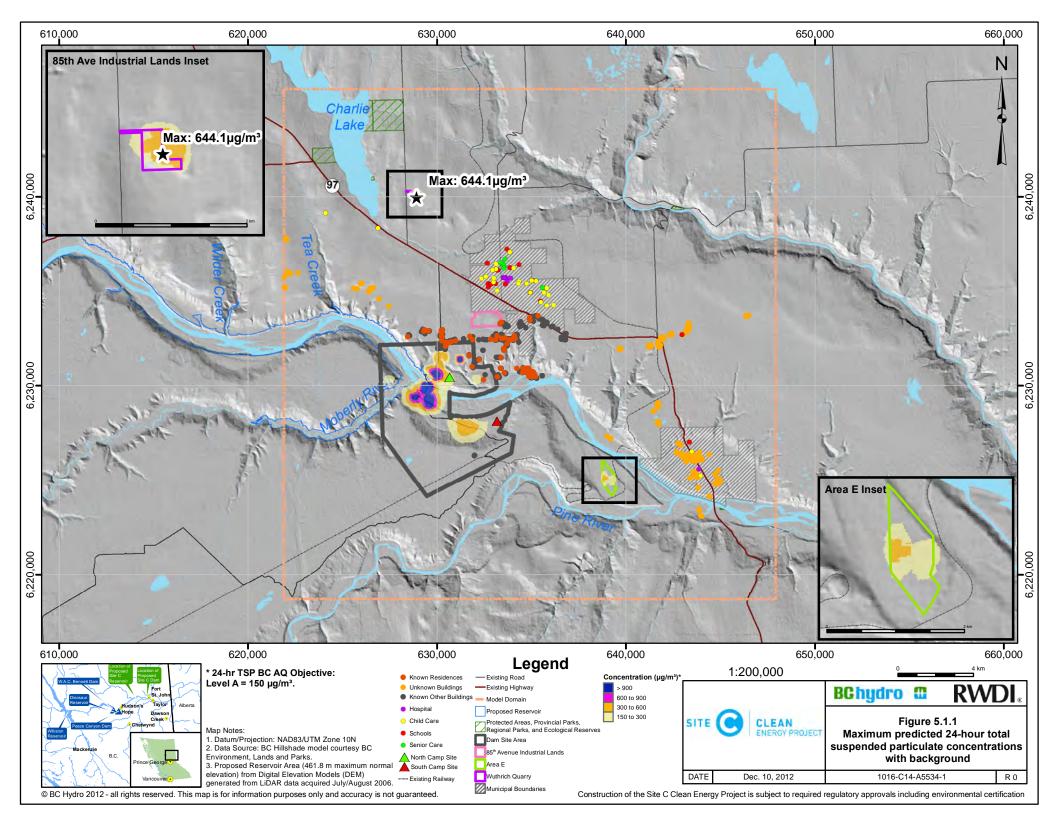


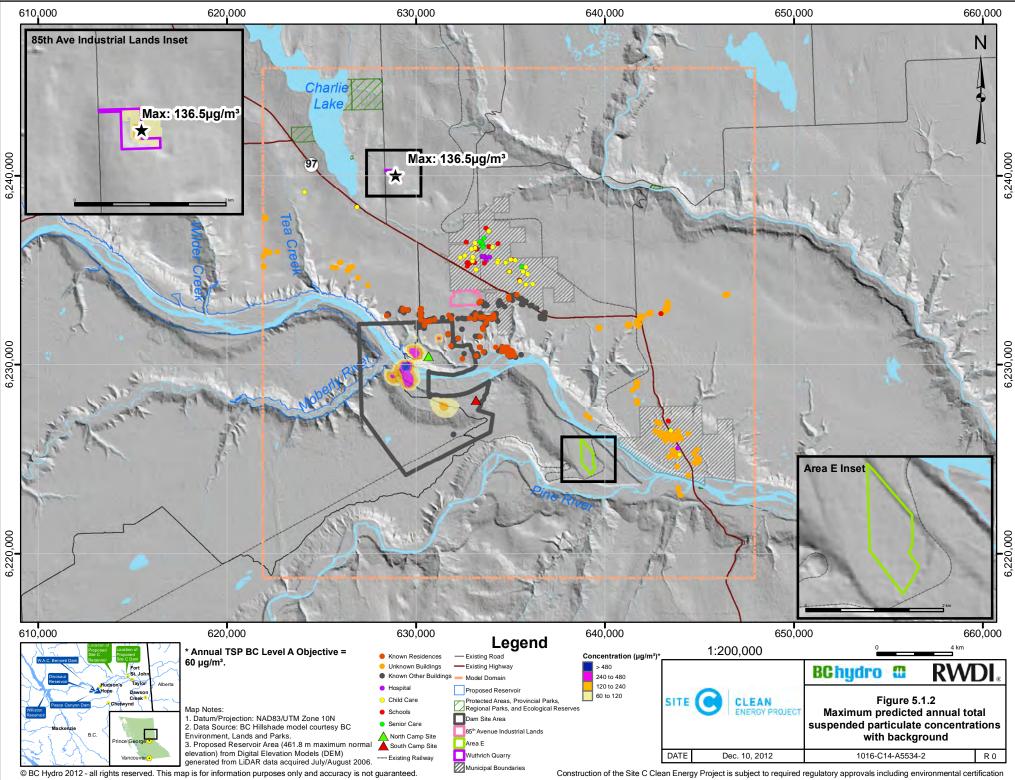


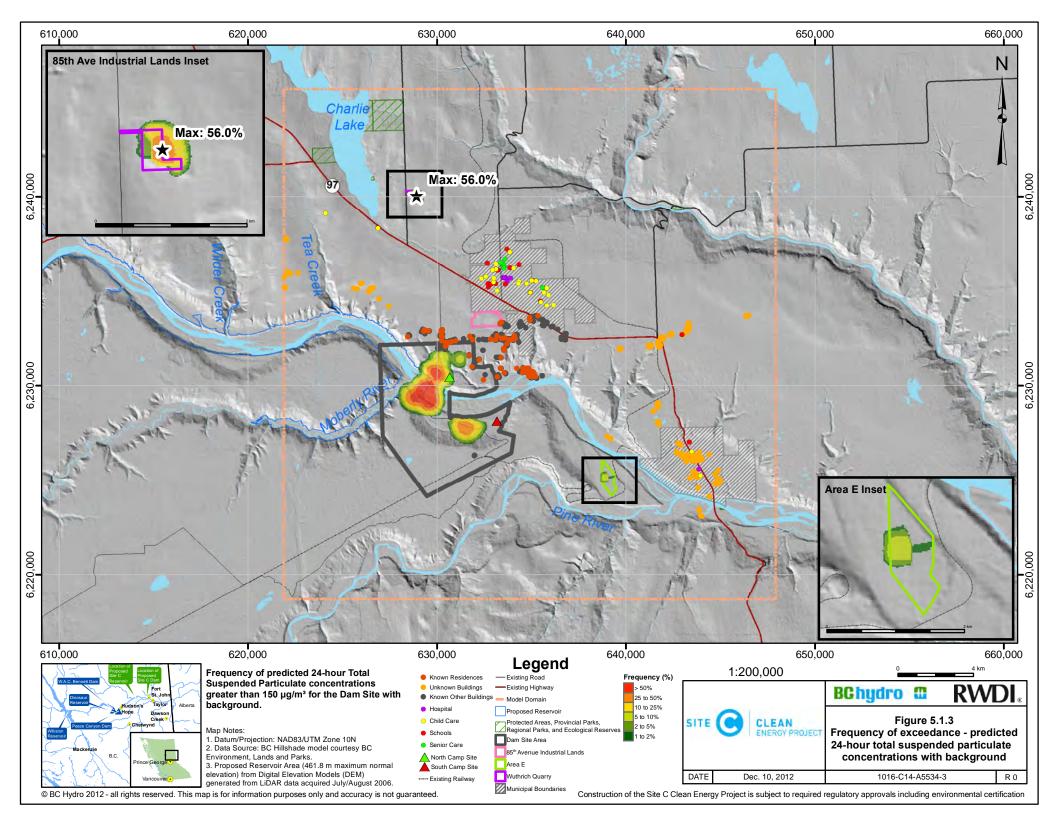


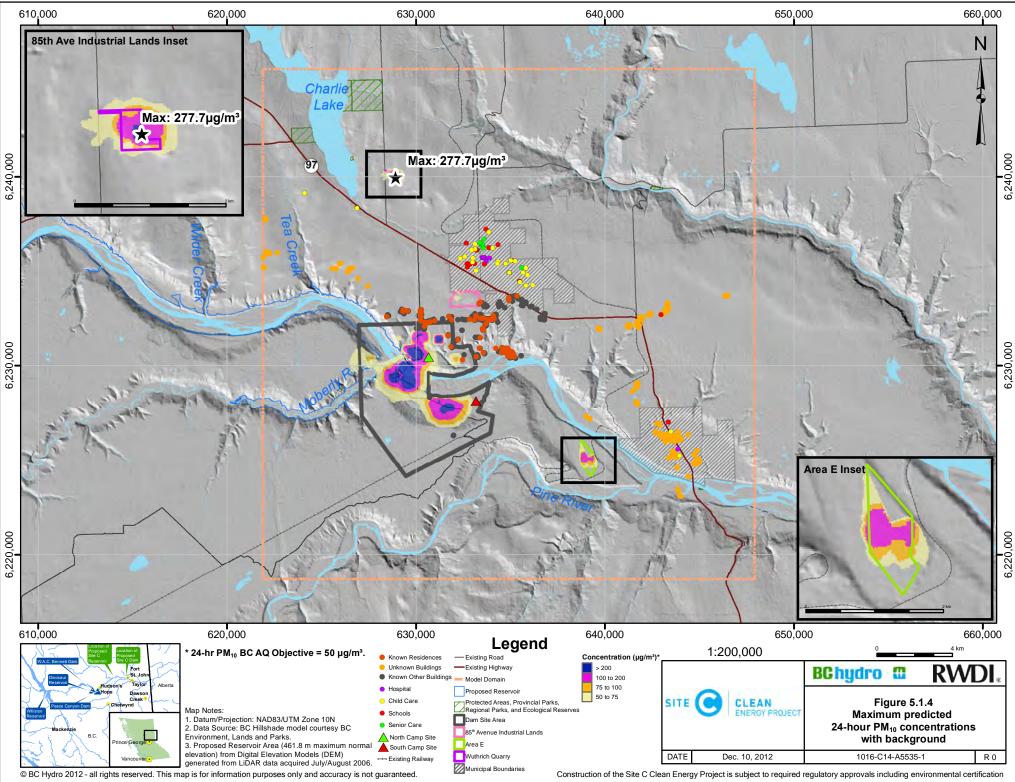


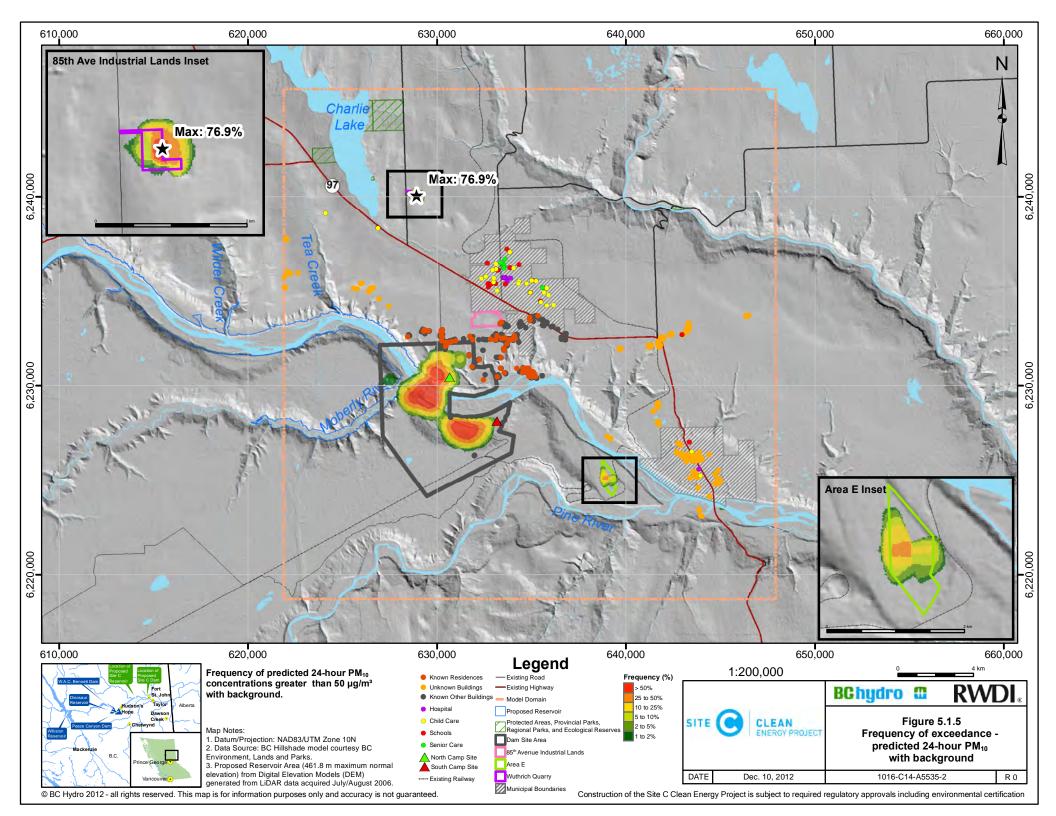


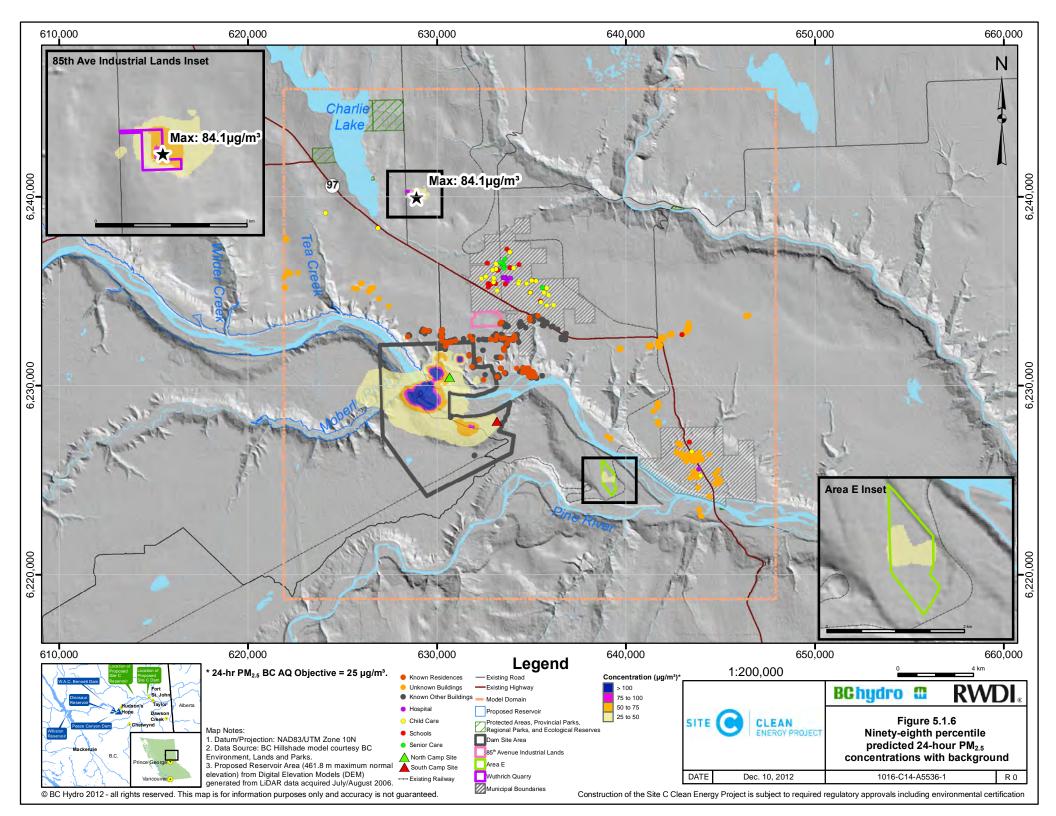


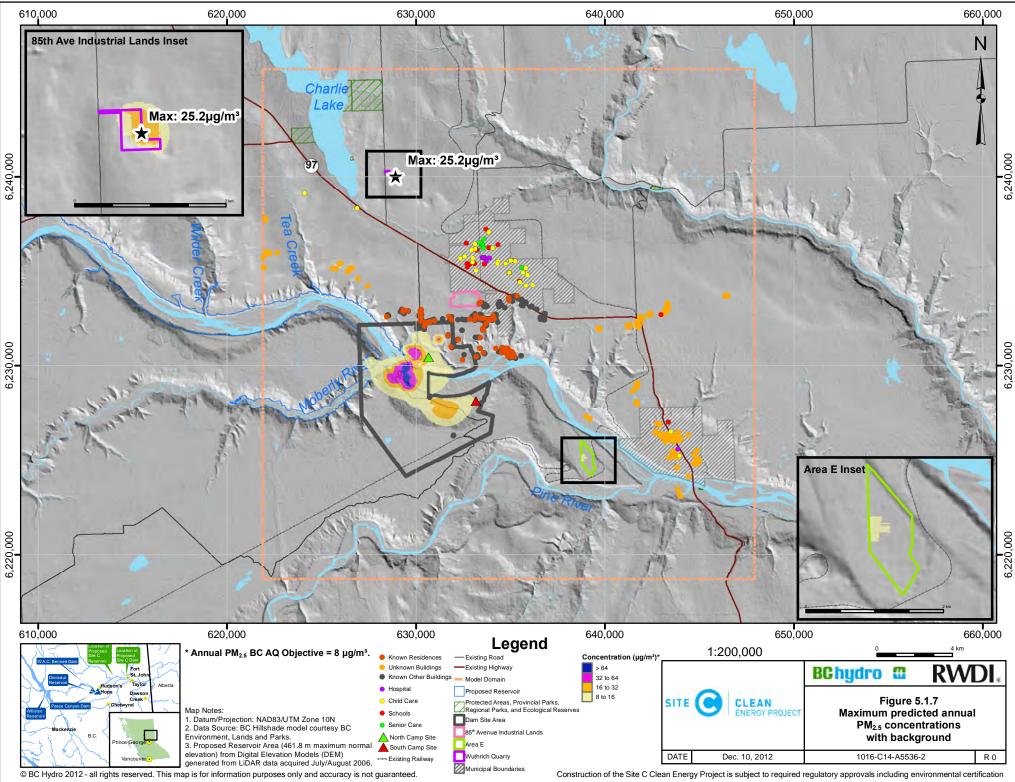


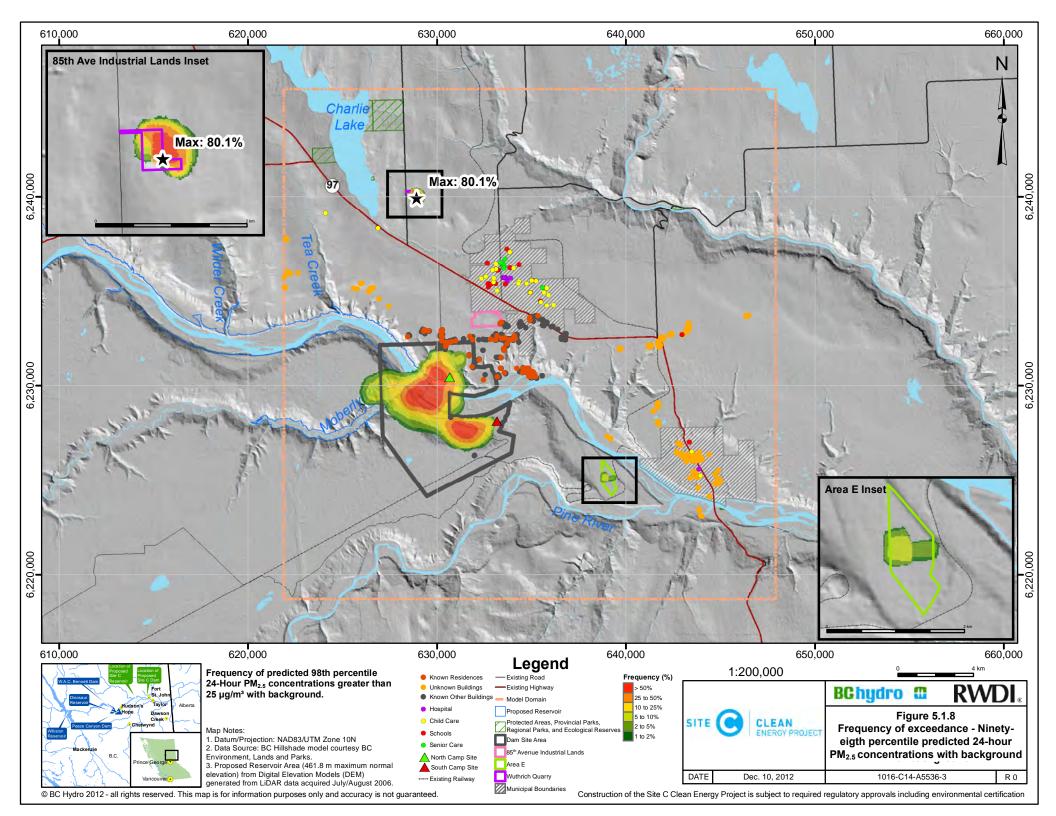


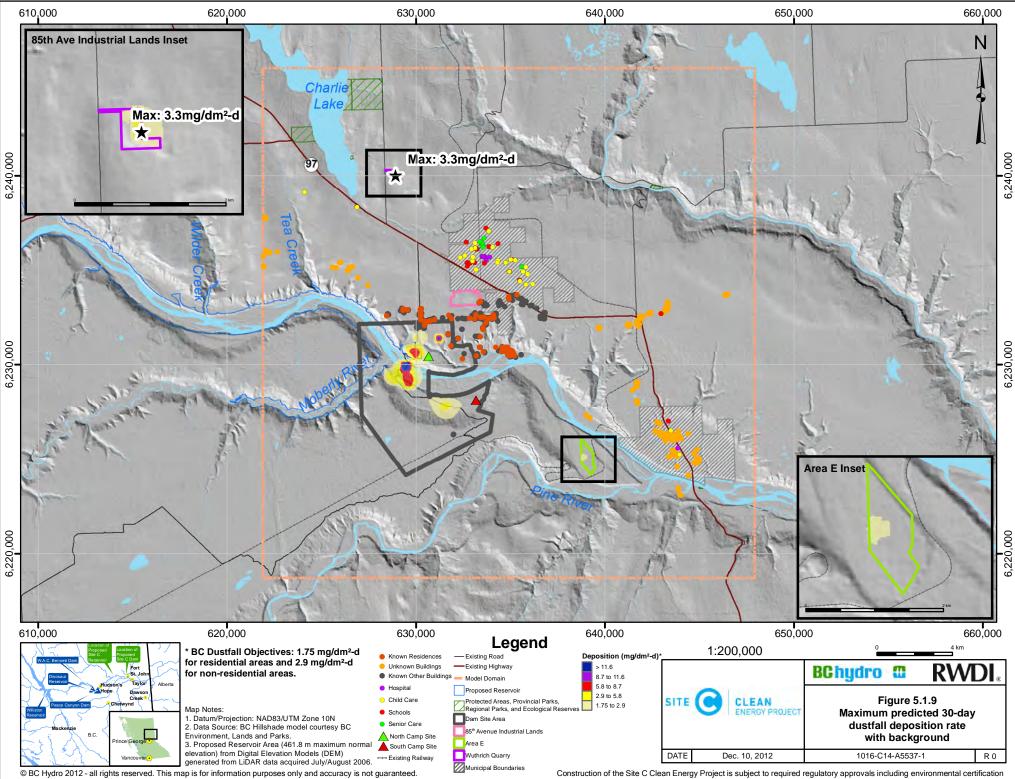


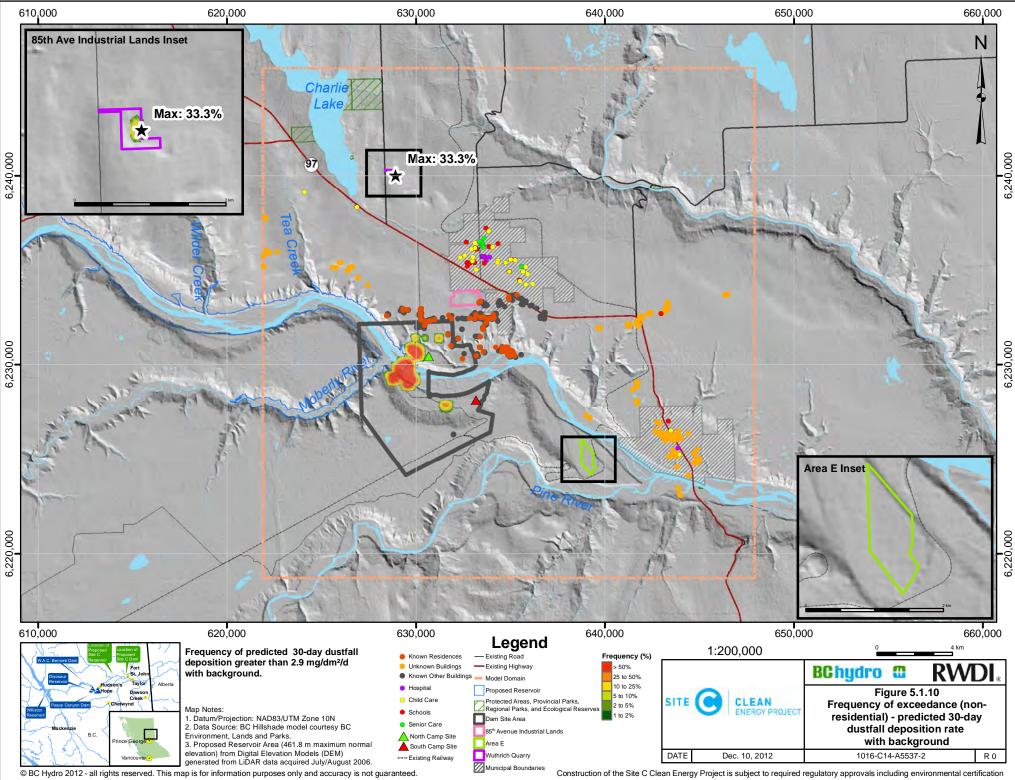


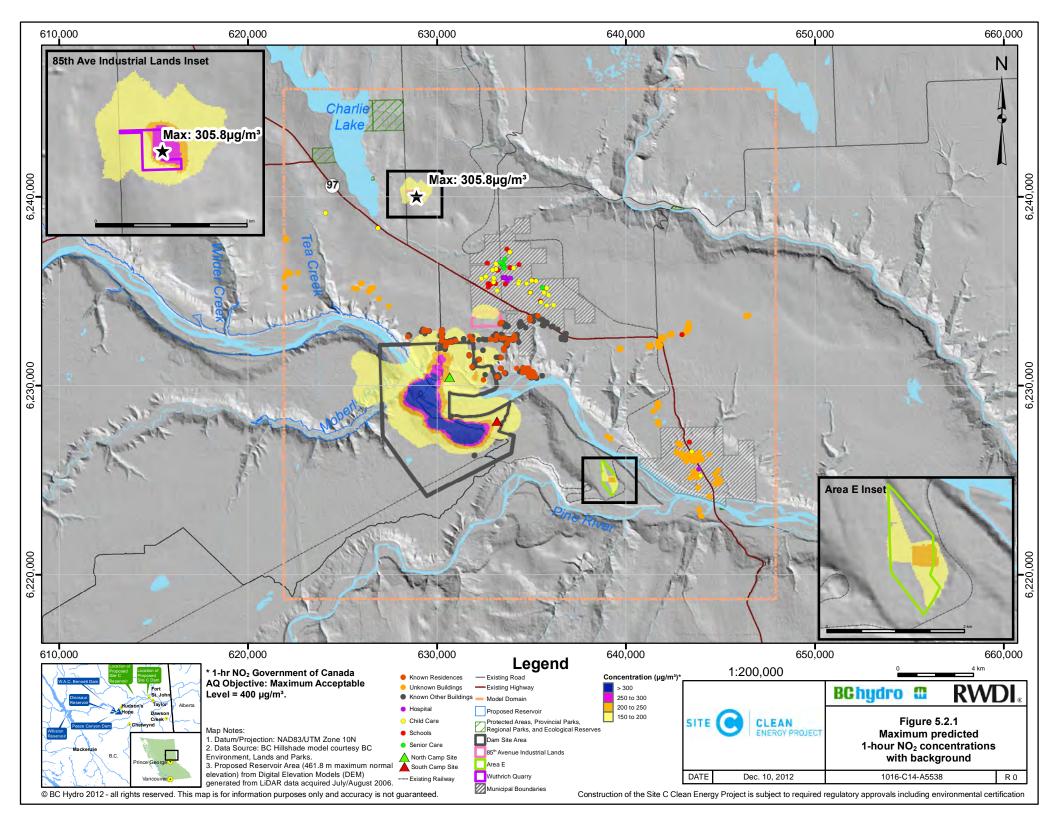


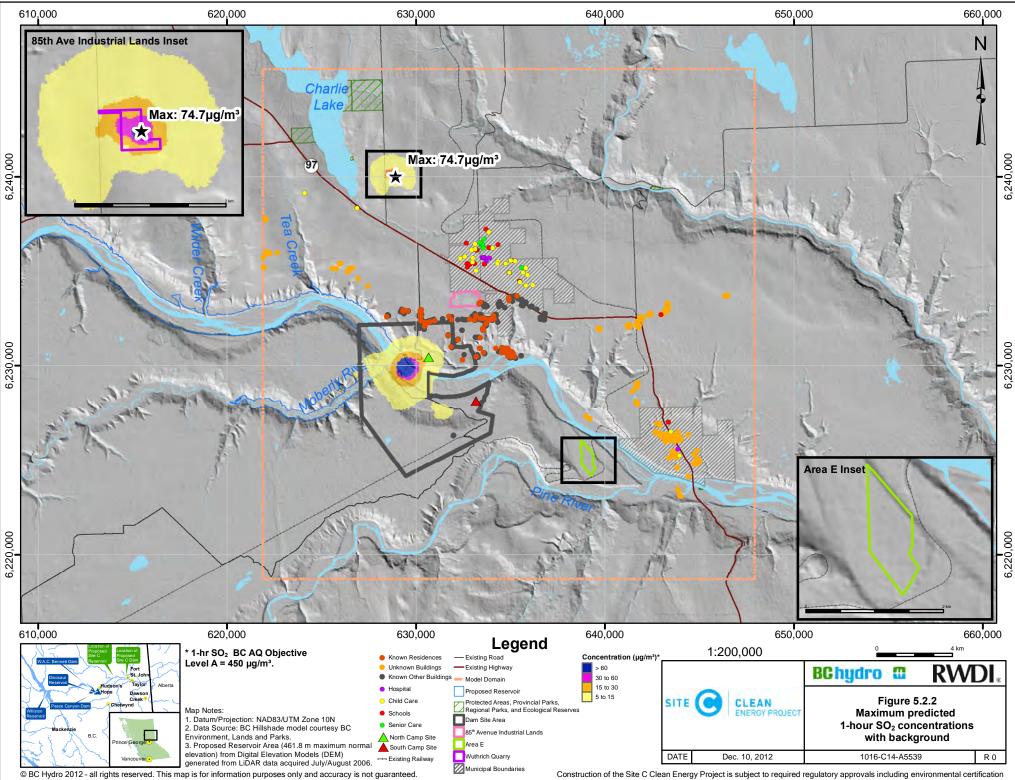


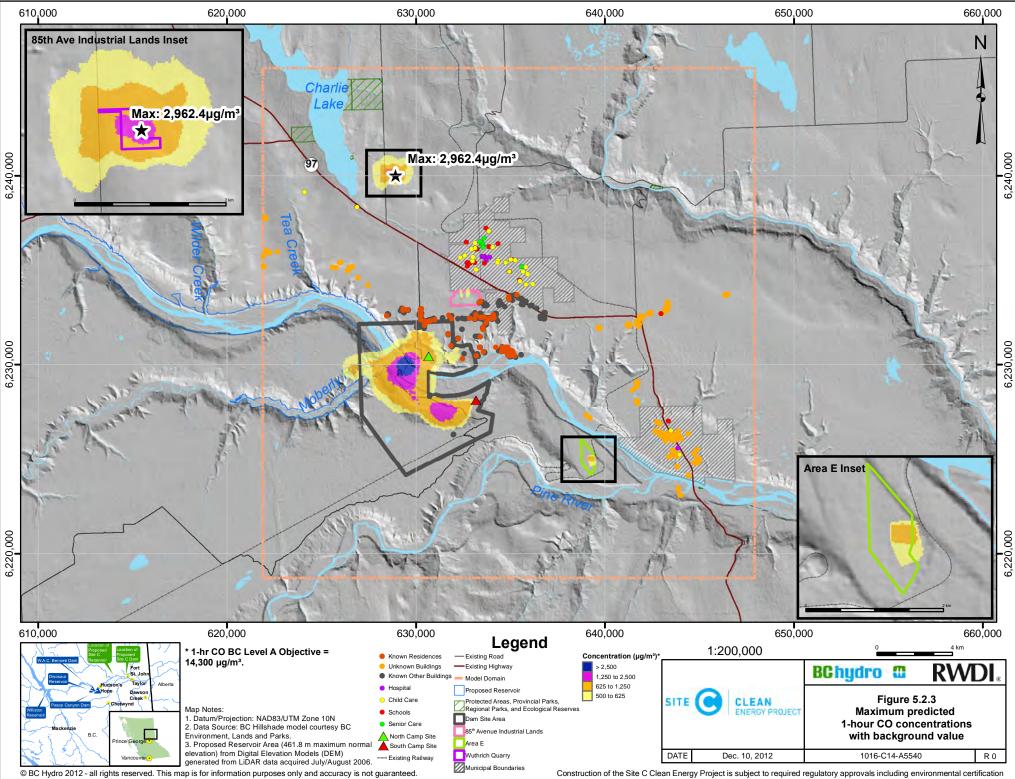












Site C Clean Energy Project

Volume 2 Appendix L Air Quality Technical Data Report

APPENDIX A

Emission Inventory Methods

A.1 Introduction

This appendix provides details on specific model inputs used in the emission inventory and dispersion modelling that are not provided in the main text of the Air Quality Technical Data Report. Model inputs are organized by the following emission sources:

- Prescribed burning and incineration
- Bulldozing
- Drilling
- Explosives detonation
- Blasting
- Material handling
- Conveyor transfers
- Concrete batch plant operations
- Material processing
- Stockpile wind erosion
- Grading and scraping
- Paved and unpaved roads
- Mobile vehicles
- Diesel-fuelled equipment
- Diesel generators
- Boats
- Aircraft
- Asphalt production

A.2 Prescribed Burning and Incineration

Information provided:

- Mass of waste/debris per burn
- Annual number of burn-days
- Annual mass of waste/debris incinerated

Assumptions were not required to estimate emissions from prescribed burning and incineration.

A.3 Bulldozing

Information provided:

- Annual volume of material (m³)
- Bulldozer hours per 1,000 m³ of material
- Silt content and moisture content
- Construction schedule and shifts at each location

The number of bulldozers required for each activity was estimated by rounding up the total bulldozing-hours divided by the scheduled working-hours per year. For example, if one location requires 2,500 bulldozing-hours and the scheduled working-hours per year at the same location were 1,200 hours, three bulldozers were used in the calculation.

A.4 Drilling

Information provided:

- Maximum number of drilled holes per hour
- Maximum number of drilled holes per day
- Annual number of drilled holes

Assumptions were not required to estimate emissions from drilling.

A.5 Explosives Detonation

Information provided:

- Annual amount of explosive required (kg)
- Type of explosive used

Explosives detonation for dam site tunnel construction would occur from mid-May in Year 2 to mid-May in Year 3. Dispersion modelling, however, includes blasting emissions year-round based on estimated emissions in Year 3 in order to capture meteorological conditions in the winter.

Emissions per blast were estimated by dividing total annual emissions by the annual number of blasts (see Section A.6). Emissions per blast were assumed to occur within one hour for the purposes of dispersion modelling.

A.6 Blasting

- Amount of explosive required (kg)
- Number of blasts per day

- Estimated area per blast (m²)
- Construction schedule and shifts at each location

The annual number of blasts was estimated by multiplying the number of blasts per day by the number of scheduled work days at each location.

A.7 Material Handling

Information provided:

- Annual mass or volume of material (m³)
- Silt content and moisture content
- Equipment hours per 1,000 m³ of material

Material load, unload and placing would be separate handling activities. Till from 85th Avenue Industrial Lands would be loaded onto a conveyor and till from Area C would be loaded onto a haul truck. Till was would be unloaded and placed at the dam site.

Material densities used to estimate mass of material handled from volume of material handled was obtained from SI Metric (2012) and are presented in Table A.1. The density of gravel was estimated from the average of loose and dry gravel, natural gravel with sand, wet gravel and dry gravel. The density of till or silt was estimated from the average of wet sand, dry sand, wet clay and dry clay.

Material	Density		
Concrete	2403		
Gravel	1782		
Limestone	1554		
Riprap	1602		
Shale	1586		
Till or Silt	1610		

Table A.1	Material densities (in kg/m ³)
-----------	--

A control factor of 90% was applied for the processing of washed aggregate (AWMA 2000). Although this control factor is used for the controlling of fugitive dust through wet suppression with chemicals, given the nature of washed aggregate where most of the silt is removed by washing, applying a higher control efficiency would be more appropriate; however, the control factor of 90% is more conservative and is most analogous to the washing of aggregate. A review of documents from the County of San Diego Air Pollution Control District (1998) and the San Joaquin Valley Air Pollution Control District (2012) indicates that emissions from washed aggregates are essentially zero. Therefore, the assumption of 90% control for the handling of washed aggregate provides a conservative estimate.

A.8 Conveyor Transfers

Information provided:

- Annual mass or volume of material (m³)
- Equipment hours per 1,000 m³ of material
- Construction schedule and shifts at each location

The densities presented in Table A.1 were used to estimate mass of material conveyed for the purposes of conveyor transfer emissions estimation.

The conveyor used for transporting till from 85th Avenue Industrial Lands would be covered at the conveyor transfer points. All other conveyors would not be covered.

A.9 Concrete Batch Plant Operations

Information provided:

- Annual mass or volume of material (m³)
- Equipment hours per 1,000 m³ of material
- Construction schedule and shifts at each location
- Concrete batch plant flow diagram

The densities presented in Table A.1 were used to estimate mass of material processed for the purposes of concrete batch plant operations emissions estimation.

The conventional concrete and roller-compact concrete batch plants each have a feed of aggregate (89%), cement (9.3%) and fly ash (2.1%). Material would be stored in silos each equipped with a baghouse. A control factor of 99% was applied to processes where a baghouse would be used (AWMA 2000). A control factor of 90% was applied for the processing of wet or washed aggregate (AWMA 2000).

A.10 Material Processing

- Annual mass or volume of material (m³)
- Silt content and moisture content
- Equipment hours per 1,000 m³ of material
- Borrow pit process flow diagram
- 85th Avenue Industrial Lands conveyor configuration

The densities presented in Table A.1 were used to estimate mass of material processed for the purposes of material processing emissions estimation.

Processing at construction material source areas would contain a grizzly and a conveyor. Material would be loaded onto the grizzly, and then the screened material would be conveyed onto a temporary stockpile. The stockpile would be consumed following its creation by loading the material onto haul trucks. The process flow and corresponding transfer points were based on the list of equipment provided for roller compact concrete (RCC) and conventional concrete (CVC) aggregate production.

A control factor of 99% was applied to crushing activities where a baghouse would be used (AWMA 2000). A control factor of 90% was applied for the processing of wet or washed aggregate (AWMA 2000) at grizzly screens. There were no controls assumed for scalping screens.

A.11 Stockpile Wind Erosion

Information provided:

- Maximum surface area of stockpile (m³)
- Height of stockpile (m)
- Silt content and moisture content
- Material and aggregate size
- Type of dust control

Stockpiles would be conical. For stockpiles where moisture content and silt content were not known, a moisture content of 2.1% and silt content of 3.9% was used, based on stone quarrying and processing industry averages listed in Section 13.2.4 of AP-42 (US EPA 2006).

A control efficiency of 90% was applied to aggregate stockpiles that are sprayed (WRAP 2006) and a control efficiency of 100% was applied to aggregate stockpiles that are washed (San Joaquin Valley Air Pollution Control District 2012; County of San Diego Air Pollution Control District 1998).

A.12 Grading and Scraping

- Annual volume of material (m³) (dam construction only)
- Grader and scraper hours per 1,000 m³ of material (dam construction only)
- Annual grader and scraper operating hours (clearing, transmission line and road infrastructure only)
- Silt content and moisture content
- Construction schedule and shifts at each location

For activities or locations where a scraper or grader is listed, all material would be scraped and/or graded. For rock excavation, the ripping and non-ripping fractions were identified as separate activities.

The densities presented in Table A.1 were used to estimate the mass of material handled for the purposes of grading and scraping emissions estimation. The AP-42 geometric mean vehicle speed of 11.4 km/h was used for the calculation of PM emissions associated with grading (US EPA 1998).

The number of graders required for each activity was estimated by rounding up the total grading-hours divided by the scheduled working-hours per year. For example, if one location requires 2,500 grading-hours and the scheduled working-hours per year at the same location were 1,200 hours, three graders were used for the calculation.

In order to quantify a reduction in emissions relative to the factors provided in Section 11.9 of AP-42 (US EPA 1998), the information provided in both Section 13.2.2 of AP-42 Unpaved Roads (US EPA 2006b) and Section 13.2.4 of AP-42 Aggregate Handling and Storage Piles (US EPA 2006) were reviewed. These documents provide two methods for estimating the control efficiency due to increased moisture levels. Both methods indicate that a control efficiency of 80% would be conservative for natural moisture content values higher than 5%. At a natural moisture content value of 18%, emissions would be controlled by over 95%. Thus, as a conservative estimate, a value of 80% was used for both grading and scraping where the natural moisture content is greater than 5%.

A.13 Paved and Unpaved Roads

Information provided:

- Onsite speed limit (km/h)
- Construction schedule and shifts at each location
- Annual volume of material (m³) (dam construction only)
- Equipment and vehicle hours per 1,000 m³ of material (dam construction only)
- Vehicle hours (generating equipment installation only)
- Annual number of units (generating equipment installation and service vehicles only)
- Vehicle empty and loaded weight (kg/each) (service vehicles only)
- Traffic management plan (truck hauls and worker transport vehicles only)
- Annual number of trips (clearing and transmission line only)
- Average one-way trip distance (km) (transmission line and service vehicles only)

Trip distances were estimated for clearing, truck haul and worker transport vehicles based on available route descriptions. For dam construction vehicles operating at 85th Avenue Industrial Lands, Area E, Wuthrich Quarry and West Pine Quarry, the average one-way trip distance would be 0.5 km, representing a short direct route from the location at which trucks are loaded to a local road outside the construction boundary. Within the dam site, a configuration of roads

would be based on topography and site layout. Trip distances for construction vehicles operating within the dam site were then estimated using this road configuration based on the start and end points identified for each activity.

The total distance travelled per vehicle was estimated in one of two ways: (1) based on the annual number of trips and the average trip distance, or (2) based on the annual hours of operation and the onsite or posted speed limit. In cases where only the annual number of units was provided (i.e. service vehicles), the annual number of trips was estimated by assuming all units made one round trip per working shift.

The onsite speed limit was given as 25 km/h at the dam site and construction material source areas, and 30 km/h at transmission line. Onsite speed limit for clearing and road infrastructure was given as be 25 km/h. The speed limit on highways would be 80 km/h, and the speed limit on other public roads would be 50 km/h.

Vehicle empty and loaded weights were estimated based on manufacturer specifications for representative vehicles. For vehicles where the model or size was not known, they were assumed to be similar to units used at the dam site to obtain an average vehicle weight.

A silt content of 8.3% was assumed for all unpaved roads based on the average silt content of haul roads to and from pits for stone quarry and processing, obtained from Section 13.2.2 *Unpaved Roads* of AP-42 (US EPA 2006b). The baseline silt loading value for low volume roads (0.6 g/m²) from Section 13.2.1 *Paved Roads* of AP-42 (US EPA 2011) was used for all paved road calculations. Although some roads are not considered low volume, the silt loading of low volume roads would provide the most conservative estimate, as silt loadings on higher volume roads tend to be lower.

Vehicles that travel between construction areas were separated into a vehicles-in-transit category, where emissions tabulated were separate from travel within the dam site or construction material source areas.

All roads inside the dam site and construction material source areas would be unpaved. For vehicles used during clearing activities and vehicles that travel both at Site C and the transmission line, half the vehicle distance travelled was assumed to be on unpaved roads. All other vehicles on the transmission line and all road infrastructure construction vehicles and vehicles-in-transit would travel only on paved roads.

Haul truck trips from the Wuthrich and West Pine construction material source areas were obtained from the traffic management plan for the worst case year; the haul truck trips for all other years were scaled based on the material processed.

The average one-way trip distance was assumed to be three kilometres for onsite service vehicles and five kilometres for offsite service vehicles. Shuttle bus trips between Fort St. John Airport and the dam site cover a one-way trip distance of ten kilometres, plus the distance from the dam site construction boundary to the core trench area along roads within the assumed road configuration.

To reduce re-suspension of road dust particles on unpaved roads, water trucks would apply water to the haul roads as needed during the spring and summer. An average control efficiency of 75% was used for year-round road dust control. The use of 75 per cent control efficiency reflects an increase in the moisture content of the haul road surface to roughly twice that of the natural moisture level, as a result of watering activities and natural precipitation (US EPA 2006b).

A.14 Motor Vehicle Combustion

Information provided:

- Onsite speed limit (km/h)
- Construction schedule and shifts at each location
- Annual volume of material (m³) (dam construction only)
- Equipment and vehicle hours per 1,000 m³ of material (dam construction only)
- Vehicle hours (generating equipment installation only)
- Annual number of units (generating equipment installation and service vehicles only)
- Vehicle empty and loaded weight (kg/each) (service vehicles only)
- Traffic management plan (truck hauls and worker transport vehicles only)
- Annual number of trips (clearing and transmission line only)
- Average one-way trip distance (km) (transmission line only)

The total distance travelled per vehicle was estimated in one of two ways: (1) based on the annual number of trips and the average trip distance, or (2) based on the annual hours of operation and the onsite or posted speed limit. In cases where only the annual number of units was provided (i.e. service vehicles), the annual number of trips was estimated by assuming all units made one round trip per working shift.

Emission factors generated by the MOVES model are dependent on vehicle speeds. For vehicles that travel between two incremental speeds preset in the MOVES model, emission factors based on the faster of the two speeds were used (US EPA 2012).

Meteorological data for January and July were obtained from climate normals provided by Environment Canada (2012). The MOVES model was executed using meteorological data for each month, with the greater emission factor generated for January and July used to estimate emissions. Road types selected for the MOVES model include rural restricted access and urban unrestricted access. Speed categories ranged from 0 to 115 km/h. Fuel types selected include gasoline and diesel. All vehicle types were selected except for motor home and motorcycle.

Vehicles that travel between construction areas were separated into a vehicles-in-transit category, where emissions tabulated were separate from travel within the dam site or construction material source areas. Haul truck trips from the Wuthrich and West Pine construction material source areas were obtained from the traffic management plan for the

worst case year; the haul truck trips for all other years were scaled based on the material processed.

The average one-way trip distance was assumed to be three kilometres for onsite service vehicles and five kilometres for offsite service vehicles. Shuttle bus trips between Fort St. John Airport and the dam site would cover a one-way trip distance of ten kilometres, plus the distance from the dam site construction boundary to the core trench area along roads within the assumed road configuration.

A.15 Diesel-fuelled equipment

Information provided:

- Construction schedule and shifts at each location
- Annual volume of material (m³) (dam construction only)
- Equipment type and equipment hours per 1,000 m³ of material (dam construction only)
- Annual operating hours per unit (except dam construction)
- Equipment horsepower (hp)
- Equipment model year

Where information on equipment horsepower was unavailable, data from typical equipment based on type, size and load were obtained from Caterpillar Inc. or from other manufacturers for equipment not manufactured by Caterpillar Inc.

For road construction, cranes were assumed to be 375 horsepower, compactors were assumed to be 401 horsepower, road reclaimers were assumed to be 540 horsepower, and pavers were assumed to be 173.5 horsepower. The 988H loader was assumed to be used for loading of asphalt for road construction. Equipment such as wheel saw and planers would have a small contribution to emissions due to their size and duration of use; therefore they were not included in the emissions estimates.

The number of equipment required for each activity was estimated by rounding up the total equipment-hours divided by the scheduled working-hours per year. For example, if one location requires 2,500 equipment-hours and the scheduled working-hours per year at the same location were 1,200 hours, there would be three units.

Emissions of PM, NO_X and CO were calculated based on the methodology used in the US EPA NONROAD model (US EPA 2004). Emissions of SO_X were estimated based on a 15 parts per million (ppm) sulphur content in non-road diesel implemented in 2010.

A.16 Diesel Generators

Information provided:

- Annual operating hours
- Fuel consumption
- Electric power rating in kW (not available for light tower generators)

Horsepower ratings were estimated based on the provided electric power ratings, where available, assuming an 80% generating efficiency. Where electric power ratings were not available (i.e. light tower generators), horsepower ratings were estimated from manufacturer specifications from Magnum Products LLC. Specifically, models MLT 4080 and MLT 4150 were references as the manufacturer specified fuel consumptions were similar to those provided for light tower generators.

A.17 Boats

Information provided:

- Vessel model and engine type
- Number of units
- Number of trips per year
- Average distance per trip (km)

As a conservative assumption, the load factor was assumed to be one (100 percent) for all boats. Emissions of SO_X were estimated based on 15 ppm sulphur content in marine diesel, which is consistent with amendments to Canada's Sulphur in Diesel Fuel Regulation that came into effect in 2007 (Environment Canada 2012b).

Boat travel speed was assumed to be 15 km/h, which corresponds to slow vessels as defined in the 2005 to 2006 BC Ocean-Going Vessel Emissions Inventory Report (Chamber of Shipping 2007). Power-based emission factors for main engines in underway mode were used.

A.18 Aircraft

- Aircraft model
- Aircraft horsepower (hp) (transmission line only)
- Aircraft fuel type
- Number flying days
- Number of aircraft (transmission line only)
- Number of trips per year (clearing only)
- Average distance per trip (km) (clearing only)

Emissions of TSP are not available in the EDMS (FAA 2007) but can be estimated from a SO_{X^-} to-TSP ratio of 2.8 provided by Criteria Air Contaminants Emissions Inventory 2002 Guidebook (Environment Canada 2006). Emissions of PM_{10} and $PM_{2.5}$ were estimated using the Particulate Matter Speciation Profiles by CEIDARS (2009) for aircraft powered by jet fuel.

Assumptions were made on the helicopter type as there are limited models in the EDMS database. Helicopters to be used for the Project were matched with similar units in the EDMS database based on the helicopter type and engine horsepower. The H500E (300hp) was assumed to be similar to Hughes 500D (317hp), the A35t Twin (420hp) was assumed to be similar to Boelkow BO-105 (420hp), and the Bell 205 was replaced by Bell UH-1 Iroquois in EDMS because Bell UH-1 Iroquois was the military equivalent. Emissions were not estimated for helicopters used for emergencies because they are not scheduled Project construction activities.

A.19 Asphalt Production

Information provided:

- Asphalt plant type and fuel type
- Mass of asphalt produced (tonnes)
- Boiler power rating (MMBtu/h)
- Hot mix asphalt mix temperature (°F)
- Operating hour

The asphalt volatility was assumed to be 0.50 and the ash content was assumed to be 0.65 from Section 11.1 Hot Mix Asphalt Plants of AP-42 (US EPA 2004b). The heating value of waste oil was assumed to be 140,000 BTU/gal or 11 kWh/L (AGSolutions LLC 2012). Emission factors for batch mix hot mix asphalt plants with a fabric filter (baghouse) were used.

The asphalt plants would have a silo and a load-out. As a conservative assumption, emissions of PM_{10} and $PM_{2.5}$ were assumed to be equal to TSP for asphalt load-out and silo filling as there are only emission factors for TSP.

A.20 References

- AGSolutions LLC, 2012. Online: http://www.wasteoilboiler.net/page/page/waste_oil_burning_facts.htm (Accessed July 2012).
- Air & Waste Management Association (AWMA). 2000. Air Pollution Engineering Manual, Second Edition. 886 pp. ISBN: 0-471-33333-6.
- CEIDARS. 2009. California Emission Inventory and Reporting System.
- The Chamber of Shipping. 2007. BC Ocean-Going Vessel Emissions Inventory Report
- County of San Diego Air Pollution Control District. 1998. http://www.sdapcd.org/toxics/emissions/trpts/trpts1.pdf
- Environment Canada. 2006. Criteria Air Contaminants Emissions Inventory 2002 Guidebook.
- Environment Canada. 2012. Canadian Climate Normals or Average 1971-2000. Online: http://climate.weatheroffice.gc.ca/climate_normals/index_e.html (Accessed May 2012)
- Environment Canada. 2012b. Sulphur in Diesel Fuel Regulation. Online: http://www.ec.gc.ca/energieenergy/default.asp?lang=En&n=7A8F92ED-1 (Accessed May 2012)
- Federal Aviation Administration. Office of Environment and Energy. 2007. Emissions and Dispersion Modeling System (EDMS) User's Manual. Prepared by CSSI Inc.
- San Joaquin Valley Air Pollution Control District. 2012. http://www.valleyair.org/busind/draftpolicies/DraftAggregatepolicy_Rev6.pdf
- SI Metric. 2012. Online: http://www.simetric.co.uk/si_materials.htm (Accessed July 2012)
- United States Environmental Protection Agency (US EPA). 1998. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1: Stationary Point and Area Sources. Section 11.9: Western Surface Coal Mining. 14 pp.
- US EPA 2004. Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling Compression-Ignition. EPA 420-P-04-009. 135 pp.
- US EPA. 2004b. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1: Stationary Point and Area Sources. Section 11.1: Hot Mix Asphalt Plants. 63 pp.
- US EPA. 2006. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1: Stationary Point and Area Sources. Section 13.2.4: Aggregate Handling and Storage Piles. 6 pp.
- US EPA. 2006b. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1: Stationary Point and Area Sources. Section 13.2.2: Unpaved Roads. 20 pp.
- US EPA. 2011. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1: Stationary Point and Area Sources. Section 13.2.1: Paved Roads. 15 pp.
- US EPA. 2012. Motor Vehicle Emission Simulator (MOVES) User Guide for MOVES2010b.
- WRAP. 2006. Western Regional Air Partnership Fugitive Dust Handbook.

Site C Clean Energy Project

Volume 2 Appendix L Air Quality Technical Data Report

APPENDIX B

Conceptual Model Plan

Tel: 604.730.5688 Fax: 604.730.2915

RWDI AIR Inc. 830 – 999 West Broadway Vancouver, B.C., Canada V5Z 1K5 Email: solutions@rwdi.com

July 13, 2012

BC Ministry of Environment Environmental Protection Division Environmental Quality Section #325 – 1011 Fourth Ave. Prince George, BC V2L 3H9

Attention:Dennis FudgeEmail:Dennis.Fudge@gov.bc.ca

Subject: Site C Clean Energy Project - Conceptual Model Plan

Dear Mr. Fudge,

The Site C Clean Energy Project is a proposed third dam and hydroelectric generating station on the Peace River in northeast BC, southwest of Fort St. John. It would provide up to 1,100 MW of capacity and produce about 5,100 GWh of clean and renewable electricity each year. The main permanent components of the project include the dam, generating station and associated structures; an 83-km reservoir that would be, on average, two to three times the width of the current river; a transmission line connecting Site C to Peace Canyon; and realignment of four segments of Highway 29, including four new bridges. The main temporary components of the Project include access roads, worker housing, offices, staging areas, several cofferdams, and material borrow areas and quarries.

Most of the air emissions associated with the Project are expected to occur during construction, which is expected to take seven years. Based on a request from Health Canada, we are proposing to estimate and model construction emissions. The focus of the modelling will be on at the dam site since it is the component located closest to a populated area and will likely be the largest source of emissions. Enclosed is our Conceptual Model Plan for the air quality assessment of Site C Clean Energy Project.

If you have any questions or comments regarding the information contained in this Conceptual Model Plan, please do not hesitate to contact me at 604-730-5688 ext. 2480.

Yours sincerely,

Laura Dailyde, P.Eng. Project Manager

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately.

® RWDI name and logo are registered trademarks in Canada and the United States of America

Date: July 13, 2012

Facility Name, Company and Location (Lat., Long.): Site C Clean Energy Project, BC Hydro (56° 11' 46.00" N, 120° 54' 48.00" W)
Air Quality Consultant and Contact Name: Laura Dailyde, RWDI AIR Inc. (604) 730-5688 x2480 Kathy Preston, RWDI AIR Inc. (604) 730-5688 x3223
Ministry Contact (Air Quality Assessment): Dennis Fudge

Assessment Type: **Answer 2 or 3**.

Anticipated sources to be modelled and corresponding contaminants:

Modelling will be performed on the dispersion modelling study area (DMSA) surrounding the dam site during construction only. Fugitive dust will be emitted by the various dam construction activities including blasting, concrete batch plant operations, material handling, material processing, crushing, and stockpiling. In addition, fugitive dust from ancillary activities that occur within the DMSA such as transmission line right-of-way construction, road and bridge construction, vegetation clearing, and construction material source area operations will be included in the modelling. Criteria air contaminants (CACs) will be emitted by boilers, heaters, generators, vehicles, and equipment operating during dam construction and ancillary activities in the DMSA. We propose to model sulphur dioxide (SO₂), carbon monoxide (CO), nitrogen dioxide (NO₂), total suspended particulates (TSP), particulate matter less than or equal to 10 microns in diameter (PM₁₀), particulate matter less than or equal to 2.5 microns in diameter (PM_{2.5}), and dustfall.

Source	Source Type (Point, Line, Area, Volume)	Contaminant(s) SO ₂ , CO, NO ₂ , TSP, PM ₁₀ , PM _{2.5} , Dustfall
Dam Construction		
Blasting	Volume	TSP, PM_{10} , $PM_{2.5}$, dustfall
Concrete batch plant operations	Area or volume	TSP, PM ₁₀ , PM _{2.5} , dustfall
Material handling	Volume	TSP, PM ₁₀ , PM _{2.5} , dustfall
Material processing	Area or volume	TSP, PM ₁₀ , PM _{2.5} , dustfall
Construction Material Source Areas	Area or volume	TSP, PM ₁₀ , PM _{2.5} , dustfall
Aggregate stockpiles	Area	TSP, PM ₁₀ , PM _{2.5} , dustfall
Crushers	Point	TSP, PM_{10} , $PM_{2.5}$, dustfall
Transmission line right-of-way	Area or volume	TSP, PM ₁₀ , PM _{2.5} , dustfall
Vegetation clearing	Area or volume	TSP, PM ₁₀ , PM _{2.5} , dustfall
Road & Bridge Construction	Area or volume	TSP, PM ₁₀ , PM _{2.5} , dustfall
Boilers/heaters	Point or Area	SO ₂ , NO ₂ , CO, TSP, PM ₁₀ , PM _{2.5}
Generators	Point	SO ₂ , NO ₂ , CO, TSP, PM ₁₀ , PM _{2.5}
Vehicles and equipment	Area	SO ₂ , NO ₂ , CO, TSP, PM ₁₀ , PM _{2.5}

Table B.1 - Conceptual Model Plan (cont'd)

Anticipated model domain and receptors (preliminary domain dimension, receptor grid/locations, sensitive receptors) – attach map

Emissions of CACs will be estimated for a 138 km by 102 km air quality technical study area (see Figure 1) that encompasses all project components. Dispersion modelling will be conducted for a smaller area around the dam site, Fort St. John and Taylor. The proposed dispersion modelling study area (DMSA) is a 26 km by 27 km rectangle specified to include a minimum five-kilometre buffer around the dam construction boundaries (see inset of Figure 1 and Figure 2). The boundaries were extended north to include the Wuthrich Quarry and the community of Charlie Lake, and east to include Area E and Taylor.

The receptor grid for the DMSA will be developed in accordance with the *Guidelines for Air Quality Dispersion Modelling in BC*. In addition, a 100-m fine grid will be applied over Fort St. John, Charlie Lake, and Taylor. Hospitals, schools, child-care centres, senior centres, worker camps and residences located within the dam site construction area will be identified on figures and maximum predicted concentrations at these locations will be presented in tables.

Terrain characteristics within domain: flat terrain or complex terrain (i.e., will complex flow need to be considered?)

Terrain in the DMSA is dominated by the Peace River Valley. Local winds within the study area could be quite variable and therefore CALMET modelling is proposed.

Dominant land cover: forested, urban, industrial, rock, water, grassland:

• Land use in the DMSA is illustrated in Figure 3. There is a mix of agricultural (cropland and rangeland, about 50%), forested (about 40%), urban, and water.

Existing air quality situation (pristine, industrial, urban):

Existing air quality in the DMSA is affected by the following sources:

- Oil and gas- gas plants, compressor stations and flares
- \circ Mines coal mines
- Wood processing- sawmills
- Forestry area- slash burning
- Residential wood smoke
- Agricultural activities

Table B.1 - Conceptual Model Plan (cont'd)

Potential air quality data sources

Two air quality stations were installed to collect baseline data. STC 1 – Attachie Flat Upper Terrace is located outside the proposed DMSA and STC 8 – Old Fort is located south of Fort St. John (see Figure 4). Both stations contain two Thermo Scientific SHARP 5030 monitors collocated to measure PM_{10} and $PM_{2.5}$. Data collection began on January 23, 2011 at Station 1 and on February 25, 2011 at Station 8. Representative PM_{10} and $PM_{2.5}$ background concentrations will be determined using data from the two stations.

The nearest stations to the project that record NO₂ and SO₂ are operated by BC MOE at Taylor Townsite and Taylor South. Following guidance from the MOE (D. Fudge pers. comm.) it was decided that these stations do not provide good background values due to their proximity to industrial installations. Therefore, background NO₂ and SO₂ will not be considered. . The nearest station that records CO is in Grand Prairie and is operated by Alberta Environment. Following guidance from the MOE (D. Fudge pers. comm.) it was decided that this station would not be representative of the DMSA and that a background hourly value of 200 ppb should be used for CO. Pine River Hasler and Pine River Gas Plant collect only H₂S and SO₂. These data will not be used because the Project is not expected to be a source of H₂S emissions and the Taylor stations are located within the DMSA and are therefore considered to be more representative of the DMSA.

Dustfall data in the air quality technical study area will be obtained from recent applications for environmental assessment certificates available on the Environmental Assessment Office website.

Potential meteorological data sources (site specific or offsite measured surface/upper-air, mesoscale model data):

We propose to run CALMET initialized with output from a mesoscale model.

- Mesoscale model data:
 The Weather Research and Forecasting (WRF) model was used to assess microclimate for the Project and therefore will also be used for the air quality assessment. It will be executed using inputs of North American Regional Reanalysis (NARR) meteorological data from January 2011 to January 2012 and terrain data from United States Geological Survey (USGS). CALWRF will be applied to WRF model outputs to extract upper air meteorology for CALMET.
- Surface stations:

Seven meteorological stations were installed for the Project (see Figure 5) to assess the potential effects of the reservoir on the microclimate. One of these stations (STC 7) is located within the DMSA. The Fort St. John Airport meteorological station is also located within the DMSA. The Taylor Townsite station also records meteorology and will be used as it is located in the DMSA. The next closest station is STC 4, which we propose including to resolve meteorology west of Site C. It is proposed to use data from the other stations only to fill data gaps. In summary, we propose using surface-station data from the following stations in CALMET:

- STC 4 Bear Flat, BC (BC Hydro)
- STC 7 Site C Dam, BC (BC Hydro)
- Fort St. John Airport, BC (Environment Canada)
- Taylor Townsite, BC (BC MOE)

Wind roses for STC 4, STC 7,Fort St. John Airport and Taylor Townsite for the period of January 16, 2011 to January 15, 2012 are presented in Figures 6 to 9, respectively.

Identify possible model(s) to be applied:

The CALPUFF model will be applied with CALMET in full 3-D mode. WRF model outputs of upper air meteorology will be used to initialize CALMET through processing with CALWRF. CALPUFF has been selected since it allows for estimation of dustfall deposition, and can accommodate all source types, including variable emission sources such as stockpiles. A desirable feature of CALMET/CALPUFF modelling system is that when applied in the full 3-D CALMET mode, it has the ability to assimilate multiple meteorological stations and to simulate the changes in mixing height and boundary layer mechanics that result from the variable land use and terrain in the study region. This modelling system also allows us to make full use of the meteorological data collected for the Project as well as the WRF model output.

Identify any potential modelling requirements due to Canada/U.S. trans-boundary issues: None

Anticipated ministry review completion date of conceptual model plan: July 13, 2012

Ministry Acceptance of Plan:	Date:
------------------------------	-------

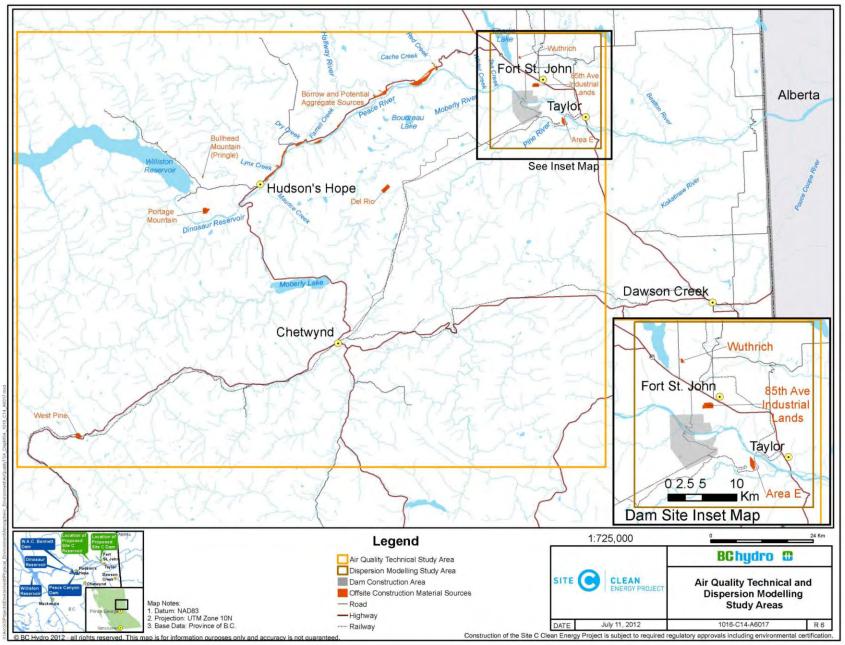


Figure 1 Map of air quality technical study area and dispersion modelling study area (inset map)

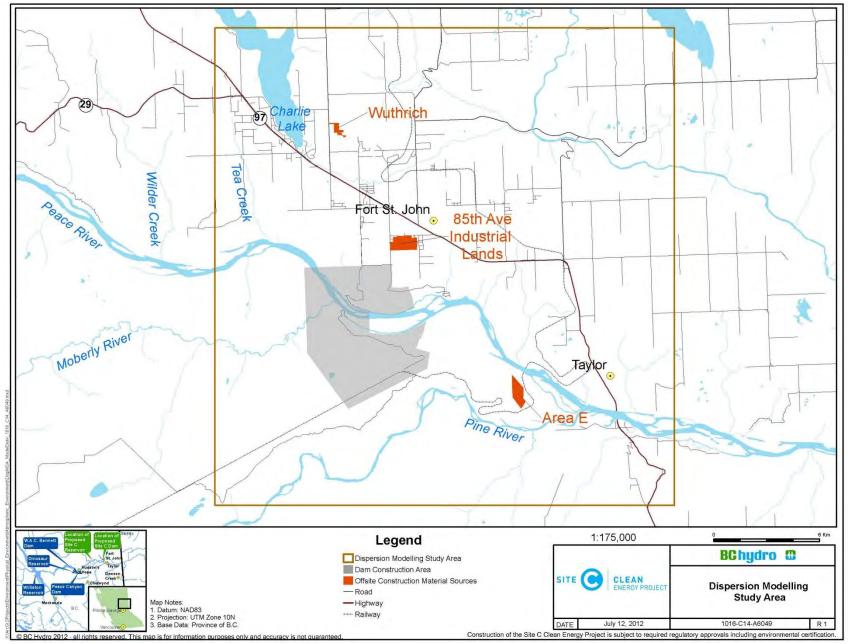


Figure 2 Map of dispersion modelling study area

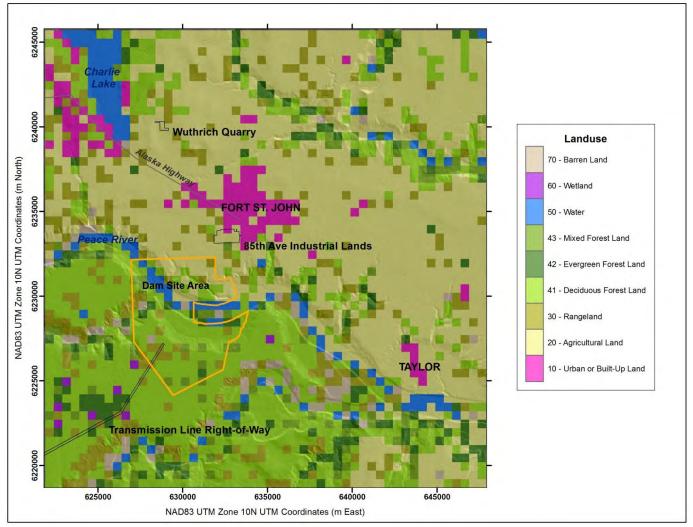


Figure 3 Land use within the dispersion modelling study area

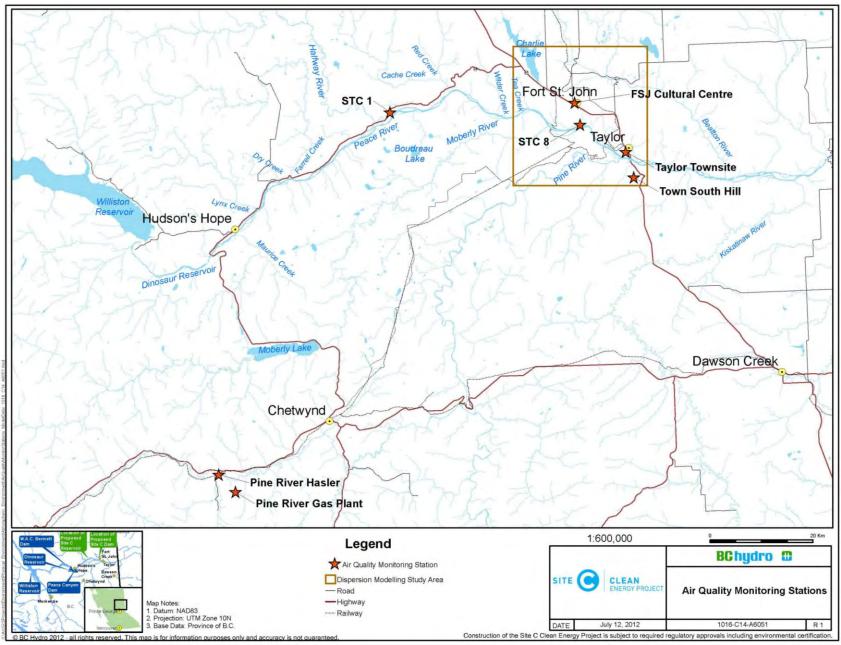
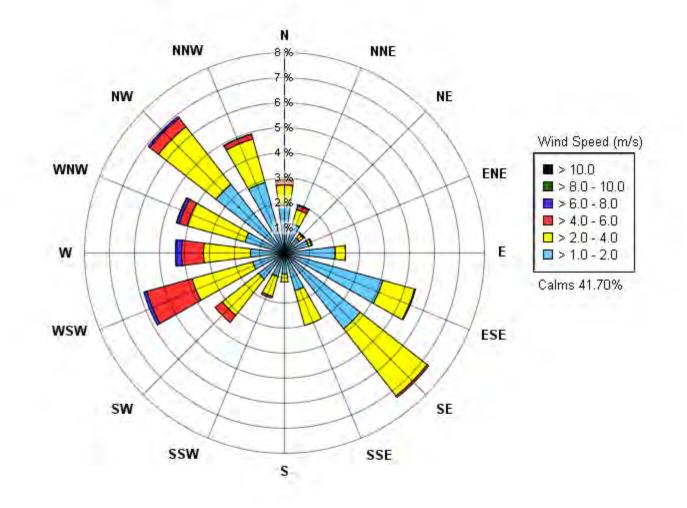



Figure 4 Location of the ambient air quality stations within the air quality technical study area

Figure 5

Map of BC Hydro microclimate stations near the Project

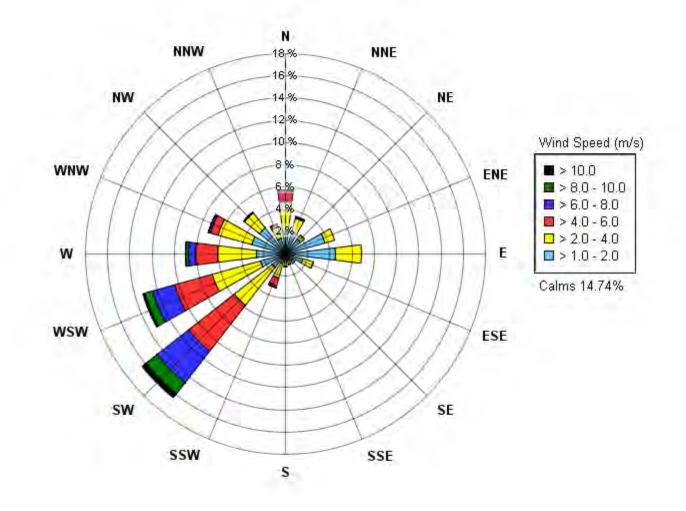


Figure 7 Wind Rose of STC 7 – Site C Dam from January 17, 2011 to January 16, 2012

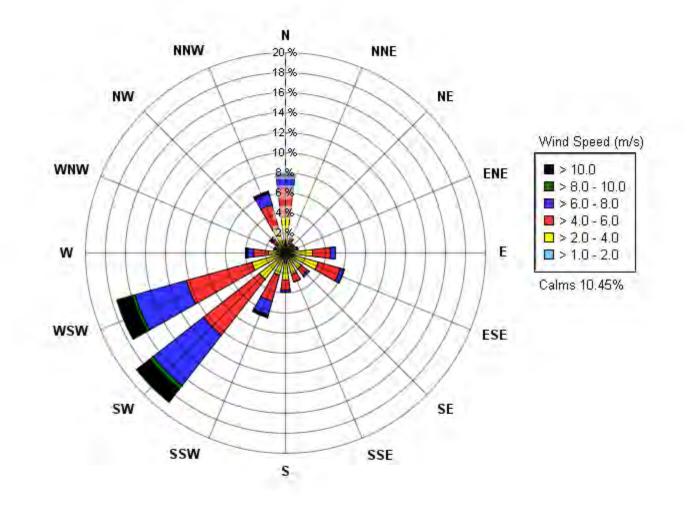
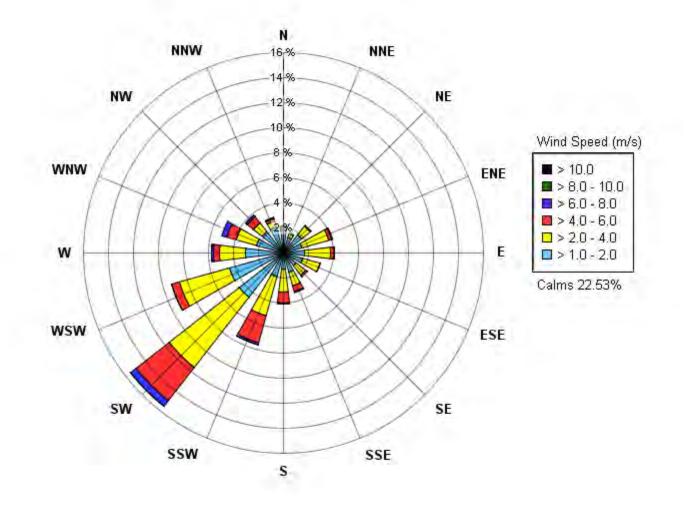



Figure 8 Wind Rose of Fort St. John Airport from January 17, 2011 to January 16, 2012

Laura Manuel - RE: Site C Air Model Plan

From:	"Fudge, Dennis ENV:EX" < Dennis.Fudge@gov.bc.ca>
To:	"'Strang, Al'" <al.strang@bchydro.com></al.strang@bchydro.com>
Date:	9/18/2012 12:42 PM
Subject:	RE: Site C Air Model Plan
CC:	"'Laura Dailyde'" <laura.dailyde@rwdi.com></laura.dailyde@rwdi.com>

I agree with the modelling plan. I am assuming the output would be the same as that specified in the modelling guidelines, which is usually the standard output the RWDI provides. I will point out the importance of good quality assured data to be used in the modelling. Please take all measures to ensure all the meteorological data is valid, including the ministry's data.

Dennis Fudge Air Pollution Meteorologist Ministry of Environment 250-565-4210

If you woke up breathing, congratulations! You have another chance!

From: Strang, AI [mailto:Al.Strang@bchydro.com]
Sent: Friday, September 14, 2012 8:13 AM
To: Fudge, Dennis ENV:EX
Cc: Laura Dailyde
Subject: Site C Air Model Plan

Hi Dennis,

As we discussed on Wednesday, here is the revised plan for the Site C air dispersion model.

The revisions incorporate your comments from our discussion on July 6.

We would appreciate receiving your approval of the plan by e-mail by September 28 so that we can include it with our report.

If you have any questions please contact me or Laura Dailyde at RWDI.

Thanks very much Dennis.

Al

Al Strang, P. Eng.

BC Hydro Four Bentall Centre 1100-1055 Dunsmuir Street PO BOX 49260 Vancouver, BC V7X 1V5

(Couriers and visitors, please go to the 6th floor reception desk)

Office: 604 699 7282 Mobile: 604 313 2342

Email: al.strang@bchydro.com

bchydro.com/sitec

This email and its attachments are intended solely for the personal use of the individual or entity named above. Any use of this communication by an unintended recipient is strictly prohibited. If you have received this email in error, any publication, use, reproduction, disclosure or dissemination of its contents is strictly prohibited. Please immediately delete this message and its attachments from your computer and servers. We would also appreciate if you would contact us by a collect call or return email to notify us of this error. Thank you for your cooperation.

-BCHydroDisclaimerID5.2.8.1541

Site C Clean Energy Project

Volume 2 Appendix L Air Quality Technical Data Report

APPENDIX C

CALMET

C.1 Introduction

This Appendix provides details on CALMET inputs (Section C.2) that are not provided in the main text of the Air Quality Technical Data Report. Some CALMET output is shown and briefly discussed in Section C.3 to demonstrate that CALMET produces meteorological input to CALPUFF that qualitatively agrees with expected meteorological conditions.

C.2 CALMET Inputs

This section presents the input parameters needed to run CALMET. These are divided into two broad categories: geophysical parameters, which specify surface properties as a function of season and land-use type, and model switch settings, which specify how CALMET will process the input.

C.2.1 Geophysical Parameters

The following tables are based on five seasons, which were identified from the climate normals at Fort St. John Airport and are described in the main text of the Air Quality Technical Data Report. Surface roughness, albedo, and Bowen ratio are mostly based on recommended values from the United States Environmental Protection Agency for the conterminous United States with some modifications to account for the high latitude of the dispersion modelling study area. Soil heat flux values are CALMET default values with one exception as noted. Finally, leaf area index is based on generic values for land-use type, which have been used previously for Canada (Zhang et al. 2002, 2003).

Anthropogenic heat flux was assumed negligible throughout the entire model domain. No gridded population data were available and heat flux was determined to be minimal in the largest urban area of Fort St. John.

Land cover characterization Category	Season 1 (Summer)	Season 2 (Autumn)	Season 3 (Winter 1)	Season 4 (Winter 2)	Season 5 (Spring)
Urban	0.54	0.54	0.50	0.50	0.52
Agricultural	0.20	0.20	0.02	0.01	0.03
Rangeland	0.15	0.15	0.02	0.01	0.03
Deciduous Forest	1.30	1.30	0.60	0.50	1.00
Coniferous Forest	1.30	1.30	1.30	1.30	1.30
Mixed Forest	1.30	1.30	0.95	0.90	1.15
Water	0.001	0.001	0.001	0.002 ^(a)	0.001
Wetland ^(b)	0.20	0.20	0.20	0.10	0.20
Barren Land	0.05	0.05	0.05	0.05	0.05

Table C.1 Seasonal values of surface roughness length by land cover characterization category (in m)

NOTES:

Source: Modified from US EPA (2008)

^a Value borrowed from "Perennial Snow or Ice".

^b Values based on emergent herbaceous wetlands.

				0,	
Land cover characterization Category	Season 1 (Summer)	Season 2 (Autumn)	Season 3 (Winter 1)	Season 4 (Winter 2)	Season 5 (Spring)
Urban	0.16	0.16	0.18	0.45	0.16
Agricultural	0.20	0.20	0.18	0.60	0.14
Rangeland	0.20	0.20	0.18	0.60	0.14
Deciduous Forest	0.16	0.16	0.17	0.50	0.16
Coniferous Forest	0.12	0.12	0.12	0.35	0.12
Mixed Forest	0.14	0.14	0.14	0.42	0.14
Water	0.10	0.10	0.10	0.70 ^(a)	0.10
Wetland ^(b)	0.14	0.14	0.14	0.30	0.14
Barren Land	0.20	0.20	0.20	0.60	0.20

Table C.2 Seasonal values of albedo by land cover characterization category

NOTES:

Source: Modified from US EPA (2008)

^a Value borrowed from "Perennial Snow or Ice".

^b Values based on emergent herbaceous wetlands.

Land cover characterization Category	Season 1 (Summer)	Season 2 (Autumn)	Season 3 (Winter 1)	Season 4 (Winter 2)	Season 5 (Spring)
Urban	0.80	1.00	1.00	0.50	0.80
Agricultural	0.50	0.70	0.70	0.50	0.30
Rangeland	0.50	0.70	0.70	0.50	0.30
Deciduous Forest	0.30	1.00	1.00	0.50	0.70
Coniferous Forest	0.30	0.80	0.80	0.50	0.70
Mixed Forest	0.30	0.90	0.90	0.50	0.70
Water	0.10	0.10	0.10	0.50 ^(a)	0.10
Wetland ^(b)	0.10	0.10	0.10	0.50	0.10
Barren Land	1.50	1.50	1.50	0.50	1.50

 Table C.3
 Seasonal values of Bowen ratio by land cover characterization category

NOTES:

Source: Modified from US EPA (2008)

^a Value borrowed from "Perennial Snow or Ice".

^b Values based on emergent herbaceous wetlands.

Table C.4	Seasonal values of soil heat flux by land cover characterization category (in Watts
	per square metre)

Land cover characterization Category	Season 1 (Summer)	Season 2 (Autumn)	Season 3 (Winter 1)	Season 4 (Winter 2)	Season 5 (Spring)
Urban	0.25	0.25	0.25	0.15 ^(a)	0.25
Agricultural	0.15	0.15	0.15	0.15	0.15
Rangeland	0.15	0.15	0.15	0.15	0.15
Deciduous Forest	0.15	0.15	0.15	0.15	0.15
Coniferous Forest	0.15	0.15	0.15	0.15	0.15
Mixed Forest	0.15	0.15	0.15	0.15	0.15
Water	1.00	1.00	1.00	1.00	1.00
Wetland	0.25	0.25	0.25	0.25	0.25
Barren Land	0.15	0.15	0.15	0.15	0.15

NOTES:

Source: CALMET defaults

^a Value borrowed from "Perennial Snow or Ice".

Season 1 (Summer)	Season 2 (Autumn)	Season 3 (Winter 1)	Season 4 (Winter 2)	Season 5 (Spring)	
0.30	0.20	0.10	0.00	0.20	
2.00	1.50	1.00	0.00	1.00	
1.00	1.00	1.00	1.00	1.00	
3.40	1.90	0.10	0.00	0.80	
5.00	5.00	5.00	5.00	5.00	
4.50	3.50	2.30	2.30	3.30	
0.00	0.00	0.00	0.00	0.00	
0.20	0.20	0.10	0.00	0.10	
0.00	0.00	0.05	0.05	0.00	
	(Summer) 0.30 2.00 1.00 3.40 5.00 4.50 0.00 0.20	(Summer) (Autumn) 0.30 0.20 2.00 1.50 1.00 1.00 3.40 1.90 5.00 5.00 4.50 3.50 0.00 0.20	(Summer)(Autumn)(Winter 1)0.300.200.102.001.501.001.001.001.003.401.900.105.005.005.004.503.502.300.000.000.000.200.200.10	Season 1 (Summer) Season 2 (Autumn) Season 3 (Winter 1) (Winter 2) 0.30 0.20 0.10 0.00 2.00 1.50 1.00 0.00 1.00 1.00 1.00 0.00 3.40 1.90 0.10 0.00 5.00 5.00 5.00 5.00 4.50 3.50 2.30 2.30 0.00 0.00 0.00 0.00 0.20 0.20 0.10 0.00	

 Table C.5
 Seasonal values of leaf area index by land cover characterization category

NOTES:

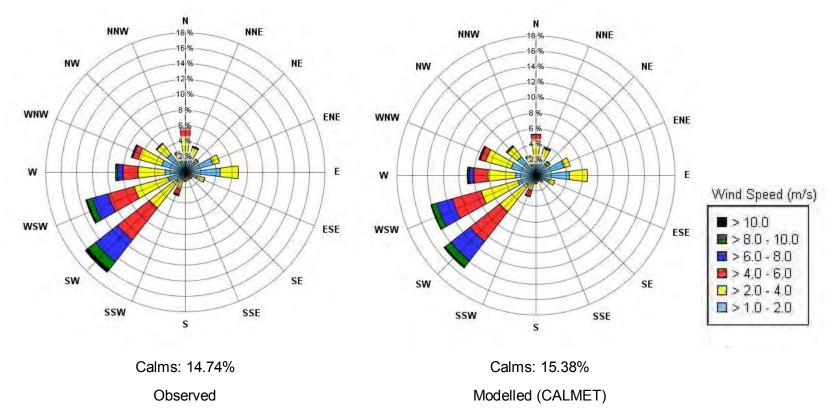
Source: Modified from Zhang et al. (2002, 2003)

^a Values based on wetlands with plants

C.2.2 Model Switch Settings

Parameter	Default	Project	Comments
IWFCOD	1	1	Diagnostic wind module used
IFRADJ	1	1	Froude number adjustment effects computed
IKINE	0	0	Kinematic effects not computed
IOBR	0	0	No adjustment to vertical velocity profile at top of model domain
ISLOPE	1	1	Slope flow effects computed
IEXTRP	-4	-4	Similarity Theory used except layer 1 data at upper air stations ignored
ICALM	0	0	Frequency of calms are realistic for Peace River Valley
BIAS	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	Not used since no upper air station data
RMIN2	4	-1	Used to ensure extrapolation of all surface stations for IEXTRP = -4
IPROG	0	14	Used WRF prognostic model output for initial guess field
LVARY	F	Т	Closest station used if no stations are within RMAX
RMAX1	NA	10	Local effects minimized to ensure smoothness over model domain
RMAX2	NA	100	Upper air stations not used
RMAX3	NA	50	Over-water stations not used
RMIN	0.1	0.1	Small value used as recommended
TERRAD	NA	2	Peace River Valley identified as main terrain feature of influence
R1	NA	2	Local effects minimized to Peace River Valley
R2	NA	10	Limited to 5 times R1 due to variability of terrain and land cover characterization
RPROG	NA	0	Not used since IPROG = 0
DIVLIM	5×10 ⁻⁶	5×10 ⁻⁶	Not used since IKINE = 0
NITER	50	50	Not used since IKINE = 0
NSMTH	2, 4, 4, 4, 4, 4, 4, 4, 4, 4	2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4	Default number of passes in the smoothing procedure
NINTR2	99	99	All stations can be used
CRITFN	1	1	Default critical Froude number used
ALPHA	0.1	0.1	Not used since IKINE = 0
FEXTR2	0	0	Not used since IEXTRP = -4
NBAR	0	0	Barriers not used
XBAR, YBAR, XEBAR, YEBAR	0, 0, 0, 0	0, 0, 0, 0	Not used since NBAR = 0

Table C.6 CALMET model switch settings


Parameter	Default	Project	Comments
IDIOPT1	0	0	Surface temperatures computed internally
ISURFT	NA	1	Diagnostic module surface temperatures based on Attachie Flat Upper Terrace Station
IDIOPT2	0	0	Lapse rate computed internally
IUPT	NA	1	Upper air stations not used
ZUPT	200	200	Lapse rate computed for default depth
IDIOPT3	0	0	Domain-averaged wind components computed internally
IUPWND	-1	-1	Upper air stations not used
ZUPWND	1, 1000	1, 1000	Default used

C.3 Results

The CALMET model was assessed by reviewing various model outputs and, where possible, comparing to observations. These outputs include: surface wind roses for three monitoring locations within the dispersion modelling study area (Site C Dam [STC 7], Fort St. John Airport, and Taylor Townsite), CALMET-derived stabilities and mixing heights, and domain wind vector plots under various stability and flow regimes.

C.3.1 Surface Winds

The combined frequency distribution of wind speed and direction as observed and as modelled by CALMET at the Site C Dam (STC 7), Fort St. John Airport, and Taylor Townsite stations are shown as wind roses in Figure C.1 to Figure C.3 respectively. Observed and modelled surface wind roses are similar at all three locations. The predominant wind directions at all three locations are southwest and west-southwest.

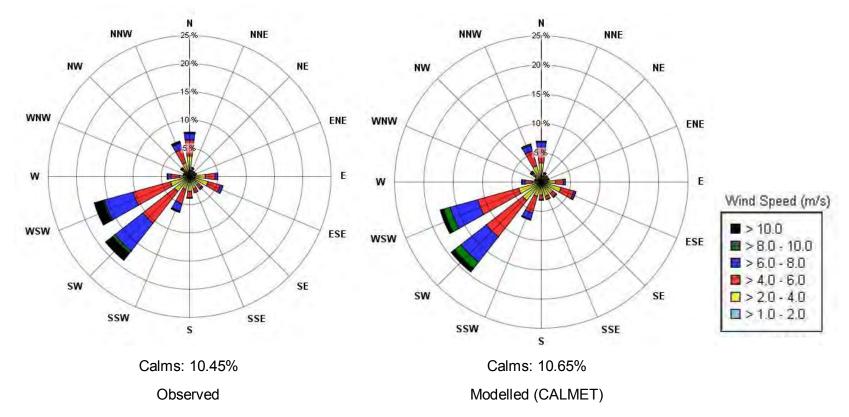


Figure C.2 Observed and modelled wind roses at Fort St. John Airport

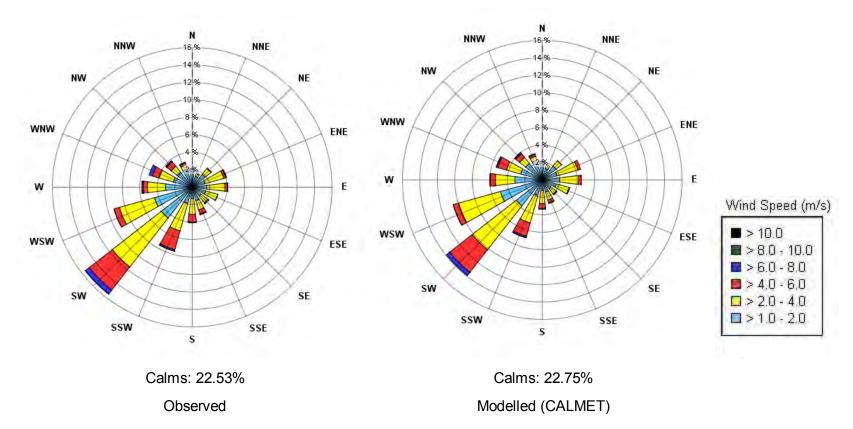


Figure C.3 Observed and modelled wind roses at Taylor Townsite Station

C.3.2 Pasquill-Gifford Stability Class

In CALMET, the Pasquill-Gifford stability scheme is used to classify atmospheric stratification in the boundary layer over land. These classes range from unstable (Classes A, B and C), through neutral (Class D) to stable (Classes E and F). Normally, unstable conditions are associated with daytime, ground-level heating, which results in thermal turbulence activity in the boundary layer. Stable conditions are primarily associated with night-time cooling, which results in the suppression of the turbulence levels and temperature inversion at lower levels. Neutral conditions are mostly associated with high wind speeds or overcast sky conditions.

The frequency distributions of CALMET-derived Pasquill-Gifford stability classes for STC7, Fort St. John and Taylor Townsite stations are shown in Figure C.4. For STC7 and Taylor Townsite, the most frequent stability class is Class F or very stable. This is a direct result of the large percentages of low (<3 m/s) wind speeds seen in the wind roses shown above. Though Class F is most commonly associated with clear skies, it can also occur for overcast conditions if the wind speed is less than 1.8 m/s. The most frequent stability class at Fort St. John is Class D or neutral, which is associated with the higher wind speeds observed at this location.

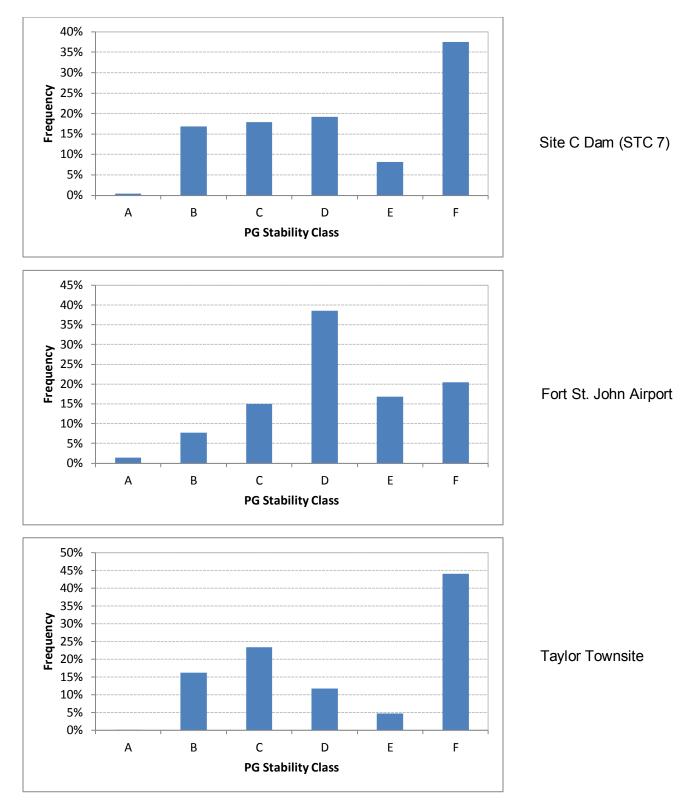
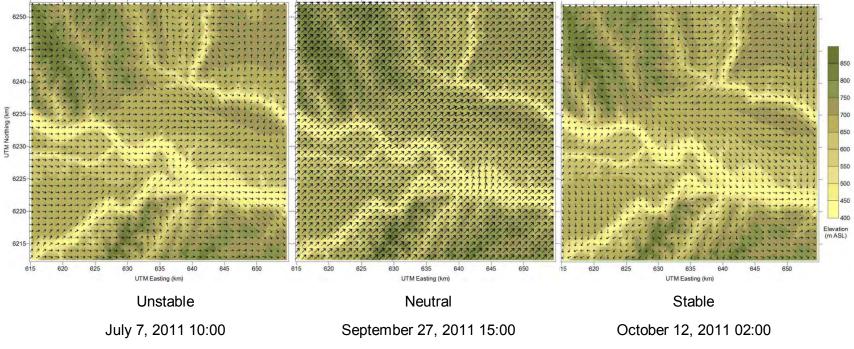



Figure C.4 Frequency of modelled Pasquill-Gifford stability classes

C.3.3 Modelled Wind Fields

A common approach used to evaluate a meteorological model's ability to replicate wind flow patterns is through the use of wind field plots. Wind fields plots representing unstable, neutral, and stable conditions are illustrated in Figure C.5 to provide an overview of how CALMET performed under different conditions. In general, CALMET-derived wind fields follow the expected terrain flows under various stability and flow regimes, flowing up slope during unstable, daytime conditions and down slope during stable, night-time conditions. Under neutral conditions, the characteristic high wind speeds result in less noticeable terrain effects and wind fields are fairly uniform across the model domain.

Arrow lengths show relative wind speed from 0 to 10.5 m/s.

C.3.4 Mixing Heights

Mixing heights are estimated in CALMET through methods that are based on either surface heat flux (thermal turbulence) and vertical temperature profiles, or friction velocities (mechanical turbulence). Table C.7 shows the average modelled mixing heights by Pasquill-Gifford stability class. Overall, the highest mixing heights are associated with unstable conditions (Classes A, B and C), while the lowest mixing heights are associated with stable conditions (Classes E and F). Figure C.6 shows the spatial distribution of mixing heights under unstable, neutral, and stable conditions. The mixing height increases with distance from water more quickly in areas where surface roughness is greater (i.e., where surface elements are larger). Diurnal variations in mixing heights are shown in Figure C.7 for a typical summer day (July 25, 2011) and a typical winter day (January 18, 2011). Mixing heights tend to increase during the day and decrease during the night, although daytime mixing heights may be suppressed during stable winter conditions due to weak solar insolation, high reflectivity of snow covered surfaces, low wind speeds and synoptic subsidence.

Station						
otation	Α	В	С	D	Е	F
STC7	640	628	412	668	325	106
FSJ	812	696	499	448	184	70
Taylor	725	641	424	351	307	95

Table C.7 Average modelled mixing height by Pasquill-Gifford Stability Class (in m)

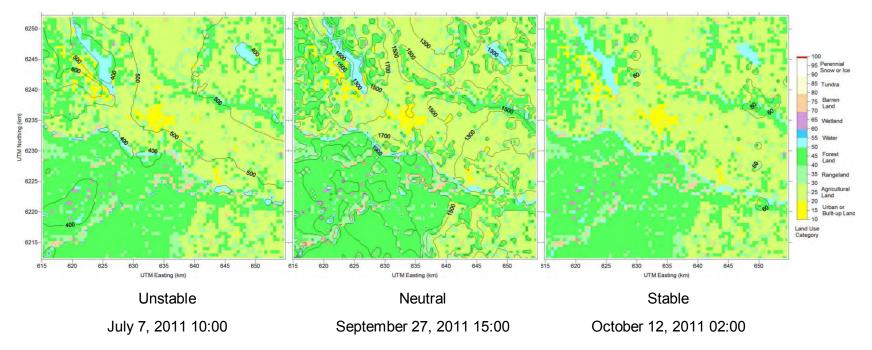


Figure C.6 Modelled mixing heights (contour lines, labels in metres) overlaid on top of land cover characterization during unstable, neutral, and stable atmospheric conditions. Contour intervals are 100 m (unstable), 200 m (neutral), and 20 m (stable).

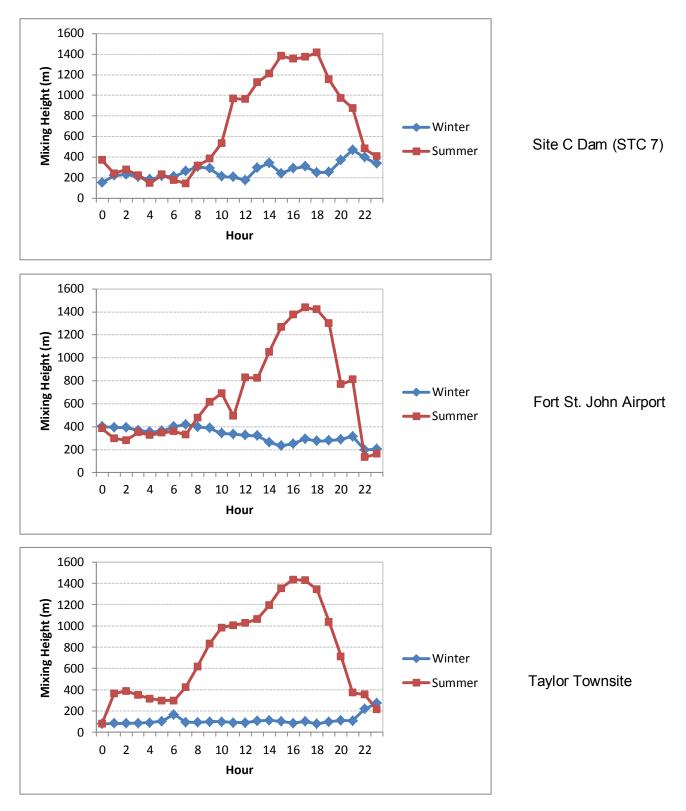
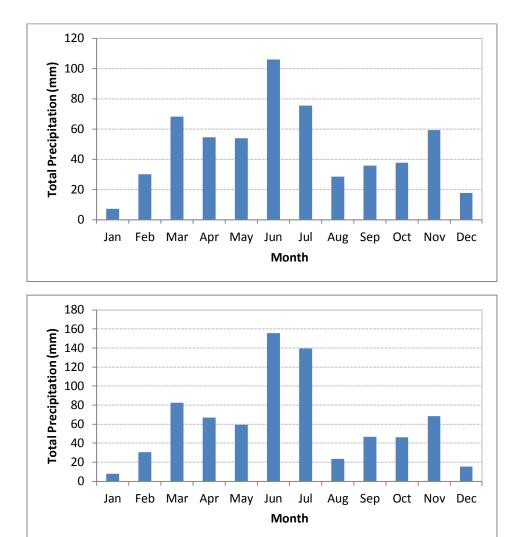
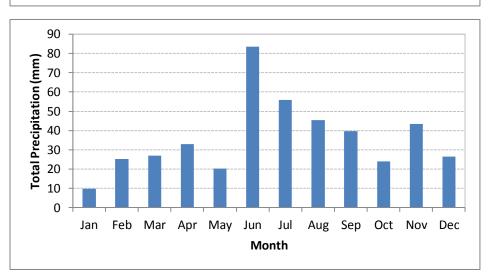
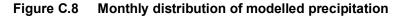




Figure C.7 Diurnal variation of modelled mixing heights

C.3.5 Precipitation

CALMET-derived monthly precipitation patterns at Site C Dam (STC 7), Fort St. John Airport and Taylor Townsite stations are illustrated in Figure C.8. The greatest amount of precipitation is expected to occur in the summer months from June to July. CALMET-derived precipitation patterns at Fort St. John Airport are compared to observed precipitation for the same period and to 30-year climate normals (1971 to 2000) in Figure C.9. While the amount of precipitation may differ, the overall monthly precipitation patterns predicted by the CALMET model are representative of actual conditions.



Taylor Townsite

Site C Dam (STC 7)

Fort St. John Airport

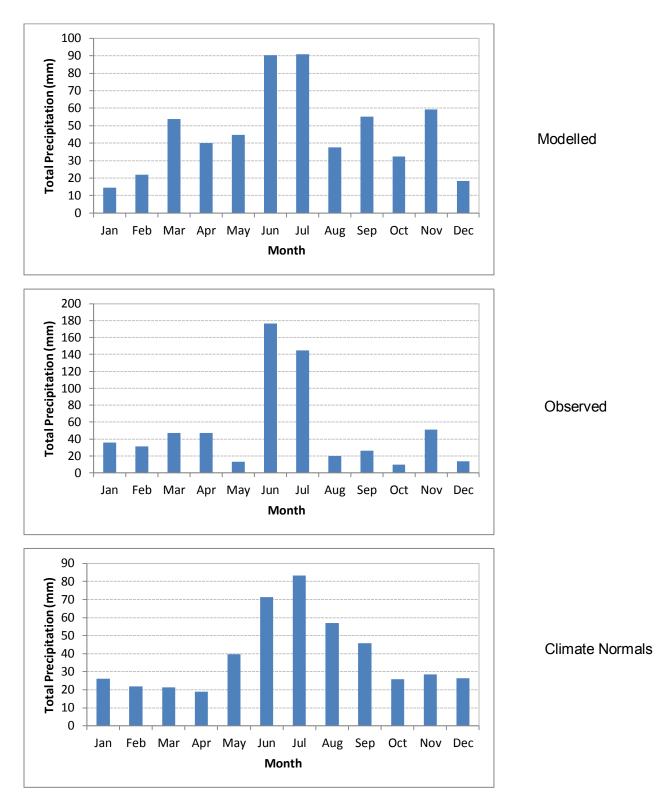


Figure C.9 Comparison of modelled precipitation with observations and climate normal at Fort St. John Airport

C.4 References

- Zhang, L., Moran, M.D., Makar, P.A., Brook, J.R., and Gong, S. 2002: *Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system*. Atmospheric Environment 36: 537-560.
- Zhang, L., Brook, J.R., and Vet, R. 2003: A revised parameterization of gaseous dry deposition in airquality models. Atmospheric Chemistry and Physics 3: 2067-2082.
- United States Environmental Protection Agency, 2008: *AERSURFACE User's Guide*, EPA-454/B-08-001.

Site C Clean Energy Project

Volume 2 Appendix L Air Quality Technical Data Report

APPENDIX D

List of Sensitive Receptors

Receptor ID	UTM Easting	UTM Northing
North camp site	630.439	6230.605
South camp site	633.206	6228.230

 Table D.1
 Special receptors at worker camps (in km)

Table D.2 Special receptors at ground-truthed residences (in km)

Residence 1 630.981 6232.372 Residence 2 630.756 6232.335 Residence 3 630.717 6232.314 Residence 4 630.581 6232.296 Residence 5 630.522 6232.296 Residence 6 630.247 6232.403 Residence 7 634.997 6230.486 Residence 8 634.862 6230.523 Residence 9 635.041 6230.508 Residence 10 635.124 6230.703 Residence 11 634.535 6230.703 Residence 12 634.579 6230.785 Residence 13 634.743 6230.703 Residence 14 634.840 6230.703 Residence 15 634.898 6230.703 Residence 16 634.982 6230.627 Residence 17 635.042 6230.725 Residence 18 635.042 6230.587 Residence 21 635.138 6230.587 Residence 21 635.138 6231.980 Residence 23 63	Receptor ID	UTM Easting	UTM Northing
Residence 3 630.717 6232.314 Residence 4 630.581 6232.296 Residence 5 630.552 6232.296 Residence 6 630.247 6232.403 Residence 7 634.997 6230.486 Residence 7 634.997 6230.486 Residence 8 634.862 6230.523 Residence 9 635.041 6230.508 Residence 10 635.124 6230.703 Residence 11 634.535 6230.703 Residence 12 634.743 6230.703 Residence 13 634.440 6230.703 Residence 14 634.898 6230.703 Residence 15 634.492 6230.725 Residence 16 634.982 6230.627 Residence 17 635.042 6230.725 Residence 18 635.042 6230.587 Residence 21 635.123 6230.587 Residence 22 630.547 6231.980 Residence 23 633.547 6231.981 Residence 24 6	Residence 1	630.981	6232.372
Residence 4 630.581 6232.296 Residence 5 630.552 6232.296 Residence 6 630.247 6230.403 Residence 7 634.997 6230.486 Residence 8 634.862 6230.523 Residence 9 635.041 6230.506 Residence 10 635.124 6230.703 Residence 11 634.535 6230.703 Residence 12 634.579 6230.785 Residence 13 634.743 6230.703 Residence 14 634.898 6230.703 Residence 15 634.898 6230.703 Residence 16 634.982 6230.725 Residence 17 635.045 6230.725 Residence 18 635.042 6230.627 Residence 20 635.123 6230.659 Residence 21 635.123 6230.659 Residence 22 630.252 6232.596 Residence 23 633.547 6231.980 Residence 24 633.549 6232.516 Residence 25 <td< td=""><td>Residence 2</td><td>630.756</td><td>6232.335</td></td<>	Residence 2	630.756	6232.335
Residence 5 630.552 6232.296 Residence 6 630.247 6232.403 Residence 7 634.997 6230.486 Residence 8 634.862 6230.523 Residence 9 635.041 6230.506 Residence 10 635.124 6230.703 Residence 11 634.535 6230.703 Residence 12 634.579 6230.785 Residence 13 634.743 6230.765 Residence 14 634.840 6230.703 Residence 15 634.898 6230.703 Residence 16 634.982 6230.755 Residence 17 635.045 6230.755 Residence 18 635.042 6230.755 Residence 19 635.072 6230.659 Residence 20 635.123 6230.587 Residence 21 633.547 6231.980 Residence 23 633.547 6231.980 Residence 24 633.549 6232.516 Residence 25 633.547 6231.881 Residence 27 <t< td=""><td>Residence 3</td><td>630.717</td><td>6232.314</td></t<>	Residence 3	630.717	6232.314
Residence 6 630.247 6232.403 Residence 7 634.997 6230.486 Residence 8 634.862 6230.523 Residence 9 635.041 6230.506 Residence 10 635.124 6230.703 Residence 11 634.535 6230.703 Residence 12 634.579 6230.785 Residence 13 634.743 6230.703 Residence 14 634.840 6230.765 Residence 15 634.898 6230.703 Residence 16 634.982 6230.755 Residence 17 635.045 6230.725 Residence 18 635.042 6230.725 Residence 19 635.072 6230.659 Residence 20 635.123 6230.587 Residence 21 635.547 6231.980 Residence 23 633.547 6231.980 Residence 24 633.549 6232.516 Residence 25 633.547 6231.881 Residence 26 633.547 6231.893 Residence 27 <	Residence 4	630.581	6232.296
Residence 7634.9976230.486Residence 8634.8626230.523Residence 9635.0416230.506Residence 10635.1246230.703Residence 11634.5356230.703Residence 12634.5796230.785Residence 13634.7436230.765Residence 14634.8406230.765Residence 15634.8986230.703Residence 16634.9826230.627Residence 17635.0456230.755Residence 18635.0426230.755Residence 20635.1236230.654Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5456231.881Residence 25633.5456231.881Residence 26633.5476231.893Residence 27633.5476232.501Residence 28634.0906232.671Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 5	630.552	6232.296
Residence 8634.8626230.523Residence 9635.0416230.506Residence 10635.1246230.508Residence 11634.5356230.703Residence 12634.5796230.785Residence 13634.7436230.765Residence 14634.8406230.703Residence 15634.8986230.703Residence 16634.9826230.627Residence 17635.0456230.755Residence 18635.0426230.755Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5456231.881Residence 26633.5476231.893Residence 27634.0906232.671Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.7036232.241Residence 32633.7036232.241Residence 33633.9706232.454	Residence 6	630.247	6232.403
Residence 9635.0416230.506Residence 10635.1246230.508Residence 11634.5356230.703Residence 12634.5796230.785Residence 13634.7436230.833Residence 14634.8406230.703Residence 15634.8986230.703Residence 16634.9826230.627Residence 17635.0456230.755Residence 18635.0426230.654Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5456231.881Residence 26633.5476231.893Residence 27634.0476232.671Residence 28634.0906232.671Residence 29634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 7	634.997	6230.486
Residence 10635.1246230.508Residence 11634.5356230.703Residence 12634.5796230.785Residence 13634.7436230.833Residence 14634.8406230.705Residence 15634.8986230.703Residence 16634.9826230.703Residence 17635.0456230.755Residence 18635.0426230.654Residence 19635.0726230.659Residence 20635.1236230.587Residence 21635.546230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5456231.881Residence 26633.5476231.893Residence 27634.0906232.671Residence 28634.0906232.671Residence 29634.0476232.438Residence 31633.8226232.438Residence 31633.7036232.434	Residence 8	634.862	6230.523
Residence 11634.5356230.703Residence 12634.5796230.785Residence 13634.7436230.833Residence 14634.8406230.765Residence 15634.8986230.703Residence 16634.9826230.627Residence 17635.0456230.755Residence 18635.0426230.654Residence 19635.0726230.654Residence 20635.1236230.587Residence 21630.2526231.980Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5456231.881Residence 26633.5476231.893Residence 27634.0906232.671Residence 28634.0906232.671Residence 29634.0476232.473Residence 31633.8226232.241Residence 31633.7036232.241Residence 33633.9706232.454	Residence 9	635.041	6230.506
Residence 12634.5796230.785Residence 13634.7436230.833Residence 14634.8406230.765Residence 15634.8986230.703Residence 16634.9826230.627Residence 17635.0456230.725Residence 18635.0426230.627Residence 19635.0726230.654Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5456231.881Residence 25633.5476231.881Residence 26633.5476231.893Residence 27633.5476232.516Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 10	635.124	6230.508
Residence 13634.7436230.833Residence 14634.8406230.765Residence 15634.8986230.703Residence 16634.9826230.627Residence 17635.0456230.755Residence 18635.0426230.725Residence 19635.0726230.654Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5476231.881Residence 26633.5476231.893Residence 27633.5476232.546Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.454	Residence 11	634.535	6230.703
Residence 14634.8406230.765Residence 15634.8986230.703Residence 16634.9826230.627Residence 17635.0456230.755Residence 18635.0426230.725Residence 19635.0726230.654Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5456231.881Residence 26633.5476231.893Residence 27634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 12	634.579	6230.785
Residence 15634.8986230.703Residence 16634.9826230.627Residence 17635.0456230.755Residence 18635.0426230.725Residence 19635.0726230.654Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5456231.881Residence 27633.5476231.893Residence 28634.0906232.671Residence 30634.1326232.501Residence 31633.8706232.438Residence 32633.7036232.241	Residence 13	634.743	6230.833
Residence 16634.9826230.627Residence 17635.0456230.755Residence 18635.0426230.725Residence 19635.0726230.654Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5456231.881Residence 26633.5476231.881Residence 27633.5476232.671Residence 28634.0906232.671Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 14	634.840	6230.765
Residence 17635.0456230.755Residence 18635.0426230.725Residence 19635.0726230.654Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5906232.546Residence 26633.5456231.881Residence 27633.5476232.671Residence 28634.0906232.671Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 15	634.898	6230.703
Residence 18635.0426230.725Residence 19635.0726230.654Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5456231.881Residence 26633.5476231.881Residence 27633.5476231.893Residence 28634.0906232.671Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 16	634.982	6230.627
Residence 19635.0726230.654Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5906232.546Residence 26633.5476231.881Residence 27633.5476231.893Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 17	635.045	6230.755
Residence 20635.1236230.659Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5906232.546Residence 26633.5456231.881Residence 27633.5476231.893Residence 28634.0906232.671Residence 29634.0476232.473Residence 30633.8226232.438Residence 31633.8226232.438Residence 32633.7036232.454	Residence 18	635.042	6230.725
Residence 21635.1386230.587Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5906232.546Residence 26633.5456231.881Residence 27633.5476232.671Residence 28634.0906232.671Residence 30634.1326232.473Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 19	635.072	6230.654
Residence 22630.2526232.596Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5906232.546Residence 26633.5456231.881Residence 27633.5476231.893Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 20	635.123	6230.659
Residence 23633.5476231.980Residence 24633.5496232.516Residence 25633.5906232.546Residence 26633.5456231.881Residence 27633.5476231.893Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 21	635.138	6230.587
Residence 24633.5496232.516Residence 25633.5906232.546Residence 26633.5456231.881Residence 27633.5476231.893Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 22	630.252	6232.596
Residence 25633.5906232.546Residence 26633.5456231.881Residence 27633.5476231.893Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 23	633.547	6231.980
Residence 26633.5456231.881Residence 27633.5476231.893Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 24	633.549	6232.516
Residence 27633.5476231.893Residence 28634.0906232.671Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 25	633.590	6232.546
Residence 28 634.090 6232.671 Residence 29 634.047 6232.473 Residence 30 634.132 6232.501 Residence 31 633.822 6232.438 Residence 32 633.703 6232.241 Residence 33 633.970 6232.454	Residence 26	633.545	6231.881
Residence 29634.0476232.473Residence 30634.1326232.501Residence 31633.8226232.438Residence 32633.7036232.241Residence 33633.9706232.454	Residence 27	633.547	6231.893
Residence 30 634.132 6232.501 Residence 31 633.822 6232.438 Residence 32 633.703 6232.241 Residence 33 633.970 6232.454	Residence 28	634.090	6232.671
Residence 31 633.822 6232.438 Residence 32 633.703 6232.241 Residence 33 633.970 6232.454	Residence 29	634.047	6232.473
Residence 32 633.703 6232.241 Residence 33 633.970 6232.454	Residence 30	634.132	6232.501
Residence 33 633.970 6232.454	Residence 31	633.822	6232.438
	Residence 32	633.703	6232.241
Residence 34 632.469 6230.313	Residence 33	633.970	6232.454
	Residence 34	632.469	6230.313

Receptor ID	UTM Easting	UTM Northing
Residence 35	632.227	6231.391
Residence 36	630.438	6232.091
Residence 37	631.858	6231.027
Residence 38	631.693	6231.612
Residence 39	633.385	6231.479
Residence 40	634.217	6230.914
Residence 41	635.205	6230.478
Residence 42	634.888	6230.495
Residence 43	631.729	6232.627
Residence 44	631.892	6232.432
Residence 45	632.827	6232.458
Residence 46	633.108	6232.423
Residence 47	633.417	6232.513
Residence 48	630.233	6232.814
Residence 49	630.237	6232.750
Residence 50	630.223	6232.954
Residence 51	630.236	6232.907
Residence 52	633.410	6233.370
Residence 53	633.348	6233.331
Residence 54	634.909	6233.462
Residence 55	634.900	6233.602
Residence 56	635.348	6233.713
Residence 57	629.555	6232.927
Residence 58	629.316	6232.906
Residence 59	629.323	6232.964
Residence 60	630.449	6232.305
Residence 61	635.088	6230.518
Residence 62	634.706	6230.715
Residence 63	634.632	6230.798
Residence 64	634.537	6230.925
Residence 65	634.738	6230.939
Residence 66	634.844	6230.924
Residence 67	634.799	6230.766
Residence 68	634.815	6230.761
Residence 69	634.889	6230.773
Residence 70	634.915	6230.769
Residence 71	634.844	6230.703
Residence 72	634.828	6230.713
Residence 73	634.951	6230.718
Residence 74	634.947	6230.768
Residence 75	635.008	6230.765

Receptor ID	UTM Easting	UTM Northing
Residence 76	634.993	6230.715
Residence 77	635.076	6230.717
Residence 78	635.096	6230.718
Residence 79	635.089	6230.604
Residence 80	630.237	6232.630
Residence 81	628.453	6232.604
Residence 82	633.190	6230.482
Residence 83	633.355	6230.925
Residence 84	633.569	6230.686
Residence 85	635.202	6230.516
Residence 86	633.165	6232.660
Residence 87	630.279	6232.963

Table D.3	Special receptors at ground-truthed non-residences (in k	m)
Table D.S	Special receptors at ground-truthed non-residences (in K	111 <i>)</i>

Table D.5 Special receptors at ground-truthed non-residences (
Receptor ID	UTM Easting	UTM Northing
Non-residence 1	630.709	6228.334
Non-residence 2	630.724	6228.349
Non-residence 3	631.896	6230.979
Non-residence 4	630.996	6232.371
Non-residence 5	630.784	6232.310
Non-residence 6	630.699	6232.333
Non-residence 7	630.658	6232.313
Non-residence 8	630.599	6232.308
Non-residence 9	630.325	6232.338
Non-residence 10	630.351	6232.358
Non-residence 11	630.361	6232.357
Non-residence 12	630.319	6232.360
Non-residence 13	630.328	6232.360
Non-residence 14	630.302	6232.348
Non-residence 15	630.246	6232.343
Non-residence 16	630.255	6232.364
Non-residence 17	630.255	6232.349
Non-residence 18	630.896	6232.415
Non-residence 19	630.888	6232.417
Non-residence 20	630.895	6232.422
Non-residence 21	630.528	6232.328
Non-residence 22	630.527	6232.347
Non-residence 23	630.499	6232.316
Non-residence 24	630.473	6232.305
Non-residence 25	630.447	6232.321
Non-residence 26	630.301	6232.359

Receptor ID	UTM Easting	UTM Northing
Non-residence 27	630.282	6232.385
Non-residence 28	630.933	6232.456
Non-residence 29	630.771	6232.361
Non-residence 30	635.021	6230.444
Non-residence 31	635.133	6230.463
Non-residence 32	634.933	6230.465
Non-residence 33	634.669	6230.722
Non-residence 34	634.373	6230.747
Non-residence 35	634.381	6230.741
Non-residence 36	634.454	6230.786
Non-residence 37	634.721	6230.824
Non-residence 38	634.904	6230.735
Non-residence 39	634.976	6230.724
Non-residence 40	634.975	6230.734
Non-residence 41	635.079	6230.582
Non-residence 42	634.982	6230.433
Non-residence 43	634.986	6230.434
Non-residence 44	634.990	6230.433
Non-residence 45	635.064	6230.733
Non-residence 46	635.559	6230.553
Non-residence 47	630.266	6232.703
Non-residence 48	630.244	6232.580
Non-residence 49	630.299	6232.482
Non-residence 50	633.556	6232.393
Non-residence 51	633.672	6232.107
Non-residence 52	633.541	6231.953
Non-residence 53	633.535	6231.964
Non-residence 54	631.988	6226.324
Non-residence 55	633.707	6232.186
Non-residence 56	634.245	6232.454
Non-residence 57	634.231	6232.707
Non-residence 58	634.232	6232.711
Non-residence 59	633.703	6232.491
Non-residence 60	633.718	6232.487
Non-residence 61	634.013	6232.543
Non-residence 62	634.065	6232.496
Non-residence 63	636.582	6232.572
Non-residence 64	634.044	6232.415
Non-residence 65	636.569	6232.484
Non-residence 66	634.109	6232.491
Non-residence 67	636.664	6232.507

Receptor ID	UTM Easting	UTM Northing
Non-residence 68	634.117	6232.506
Non-residence 69	634.130	6232.514
Non-residence 70	636.698	6232.511
Non-residence 71	636.681	6232.499
Non-residence 72	636.727	6232.539
Non-residence 73	636.788	6232.473
Non-residence 74	633.847	6232.489
Non-residence 75	633.760	6232.438
Non-residence 76	634.147	6232.482
Non-residence 77	633.694	6232.129
Non-residence 78	633.664	6232.127
Non-residence 79	633.683	6232.132
Non-residence 80	633.703	6232.133
Non-residence 81	633.712	6232.132
Non-residence 82	633.695	6232.140
Non-residence 83	634.318	6232.305
Non-residence 84	633.676	6232.153
Non-residence 85	633.702	6232.170
Non-residence 86	636.793	6232.437
Non-residence 87	636.794	6232.426
Non-residence 88	636.747	6232.422
Non-residence 89	636.776	6232.519
Non-residence 90	633.791	6232.477
Non-residence 91	633.665	6232.282
Non-residence 92	633.664	6232.298
Non-residence 93	633.685	6232.296
Non-residence 94	633.676	6232.289
Non-residence 95	633.706	6232.222
Non-residence 96	633.703	6232.200
Non-residence 97	633.730	6232.221
Non-residence 98	633.806	6232.494
Non-residence 99	633.805	6232.498
Non-residence 100	636.768	6232.602
Non-residence 101	633.805	6232.503
Non-residence 102	633.908	6232.447
Non-residence 103	633.911	6232.490
Non-residence 104	632.547	6230.574
Non-residence 105	631.982	6231.163
Non-residence 106	631.982	6231.127
Non-residence 107	631.960	6231.110
Non-residence 108	632.131	6231.351

Receptor ID	UTM Easting	UTM Northing
Non-residence 109	632.237	6231.408
Non-residence 110	630.192	6232.050
Non-residence 111	630.176	6232.008
Non-residence 112	630.031	6232.003
Non-residence 113	630.039	6231.965
Non-residence 114	630.433	6232.124
Non-residence 115	630.415	6232.072
Non-residence 116	630.397	6232.048
Non-residence 117	630.429	6232.027
Non-residence 118	630.394	6231.969
Non-residence 119	630.393	6231.980
Non-residence 120	630.419	6231.972
Non-residence 121	630.431	6231.946
Non-residence 122	630.345	6232.115
Non-residence 123	630.273	6232.059
Non-residence 124	630.296	6232.052
Non-residence 125	630.300	6232.083
Non-residence 126	630.256	6232.077
Non-residence 127	630.239	6232.054
Non-residence 128	628.501	6232.716
Non-residence 129	631.705	6231.574
Non-residence 130	633.145	6231.522
Non-residence 131	633.295	6231.506
Non-residence 132	633.349	6231.512
Non-residence 133	633.275	6231.506
Non-residence 134	633.386	6231.498
Non-residence 135	633.269	6230.441
Non-residence 136	633.237	6230.581
Non-residence 137	633.292	6230.470
Non-residence 138	633.261	6230.472
Non-residence 139	633.225	6230.449
Non-residence 140	633.391	6230.914
Non-residence 141	633.630	6230.661
Non-residence 142	633.628	6230.657
Non-residence 143	631.766	6232.355
Non-residence 144	631.411	6232.490
Non-residence 145	631.403	6232.484
Non-residence 146	631.876	6232.603
Non-residence 147	632.203	6232.437
Non-residence 148	632.427	6232.483
Non-residence 149	632.632	6232.445

Receptor ID	UTM Easting	UTM Northing
Non-residence 150	632.430	6231.891
Non-residence 151	632.963	6232.611
Non-residence 152	632.828	6232.481
Non-residence 153	633.145	6232.700
Non-residence 154	633.134	6232.689
Non-residence 155	633.442	6232.703
Non-residence 156	633.084	6232.423
Non-residence 157	633.105	6232.405
Non-residence 158	633.046	6232.480
Non-residence 159	633.419	6232.447
Non-residence 160	633.452	6232.453
Non-residence 161	633.424	6232.451
Non-residence 162	633.127	6232.758
Non-residence 163	630.249	6232.842
Non-residence 164	630.298	6232.738
Non-residence 165	630.247	6232.782
Non-residence 166	634.386	6233.116
Non-residence 167	634.207	6232.732
Non-residence 168	635.335	6233.676
Non-residence 169	635.310	6233.690
Non-residence 170	636.056	6233.139
Non-residence 171	635.660	6233.183
Non-residence 172	635.581	6233.534
Non-residence 173	635.575	6233.206
Non-residence 174	635.529	6233.502
Non-residence 175	635.633	6233.267
Non-residence 176	635.687	6233.405
Non-residence 177	635.751	6233.348
Non-residence 178	635.820	6233.359
Non-residence 179	630.258	6232.922
Non-residence 180	634.541	6233.203
Non-residence 181	633.385	6233.309
Non-residence 182	633.348	6233.268
Non-residence 183	633.503	6233.342
Non-residence 184	633.633	6233.221
Non-residence 185	634.933	6233.444
Non-residence 186	635.804	6233.334
Non-residence 187	633.576	6233.209
Non-residence 188	635.793	6233.323
Non-residence 189	635.790	6233.311
Non-residence 190	633.658	6233.135

Receptor ID	UTM Easting	UTM Northing
Non-residence 191	635.803	6233.303
Non-residence 192	633.656	6233.119
Non-residence 193	635.749	6233.372
Non-residence 194	634.690	6233.086
Non-residence 195	635.608	6233.285
Non-residence 196	636.833	6232.745
Non-residence 197	633.745	6233.168
Non-residence 198	636.822	6232.743
Non-residence 199	633.760	6233.162
Non-residence 200	636.790	6232.734
Non-residence 201	636.777	6232.764
Non-residence 202	633.639	6233.221
Non-residence 203	633.658	6233.220
Non-residence 204	633.619	6233.125
Non-residence 205	634.432	6233.402
Non-residence 206	634.423	6233.360
Non-residence 207	634.340	6233.269
Non-residence 208	634.914	6233.603
Non-residence 209	634.903	6233.556
Non-residence 210	635.007	6233.494
Non-residence 211	635.007	6233.556
Non-residence 212	635.030	6233.644
Non-residence 213	635.234	6233.722
Non-residence 214	635.199	6233.691
Non-residence 215	636.133	6233.165
Non-residence 216	629.360	6232.774
Non-residence 217	629.356	6232.783
Non-residence 218	629.578	6232.895
Non-residence 219	629.226	6232.883
Non-residence 220	629.334	6232.855
Non-residence 221	629.324	6232.873
Non-residence 222	629.292	6232.864
Non-residence 223	629.279	6232.862
Non-residence 224	629.331	6232.925
Non-residence 225	629.345	6232.916
Non-residence 226	629.348	6232.935
Non-residence 227	633.401	6232.733
Non-residence 228	630.655	6232.303
Non-residence 229	630.407	6232.300
Non-residence 230	630.452	6232.324
Non-residence 231	630.360	6232.328

Receptor ID	UTM Easting	UTM Northing
Non-residence 232	630.809	6232.413
Non-residence 233	630.679	6232.377
Non-residence 234	635.280	6230.416
Non-residence 235	634.753	6230.706
Non-residence 236	634.459	6230.807
Non-residence 237	634.485	6230.766
Non-residence 238	634.674	6230.781
Non-residence 239	634.719	6230.837
Non-residence 240	634.543	6230.948
Non-residence 241	634.915	6230.724
Non-residence 242	634.915	6230.654
Non-residence 243	635.018	6230.724
Non-residence 244	635.096	6230.655
Non-residence 245	635.128	6230.627
Non-residence 246	635.559	6230.527
Non-residence 247	630.258	6232.565
Non-residence 248	631.977	6226.320
Non-residence 249	633.954	6232.464
Non-residence 250	634.021	6232.502
Non-residence 251	636.675	6232.516
Non-residence 252	636.764	6232.524
Non-residence 253	633.791	6232.481
Non-residence 254	633.682	6232.260
Non-residence 255	633.808	6232.445
Non-residence 256	633.820	6232.470
Non-residence 257	631.968	6231.106
Non-residence 258	632.215	6231.407
Non-residence 259	630.179	6231.985
Non-residence 260	630.455	6232.103
Non-residence 261	630.434	6231.940
Non-residence 262	630.116	6232.674
Non-residence 263	628.548	6232.661
Non-residence 264	631.692	6231.654
Non-residence 265	633.277	6231.494
Non-residence 266	633.164	6230.500
Non-residence 267	633.210	6230.535
Non-residence 268	633.276	6230.498
Non-residence 269	633.220	6230.512
Non-residence 270	633.590	6230.696
Non-residence 271	634.866	6230.491
Non-residence 272	631.883	6232.606

Receptor ID	UTM Easting	UTM Northing
Non-residence 273	632.540	6232.426
Non-residence 274	632.425	6231.891
Non-residence 275	633.140	6232.682
Non-residence 276	633.196	6232.449
Non-residence 277	630.243	6232.781
Non-residence 278	630.280	6232.975
Non-residence 279	635.385	6233.556
Non-residence 280	635.106	6233.424
Non-residence 281	635.812	6233.348
Non-residence 282	635.182	6233.689
Non-residence 283	636.388	6232.996
Non-residence 284	629.248	6233.007
Non-residence 285	629.176	6232.862
Non-residence 286	629.578	6232.917
Non-residence 287	629.256	6232.919

Table D.4Special receptors at unknown private buildings (in km)				
Receptor ID	UTM Easting	UTM Northing		
Unknown Building 1	644.950	6225.018		
Unknown Building 2	644.872	6225.507		
Unknown Building 3	644.880	6225.504		
Unknown Building 4	644.952	6225.002		
Unknown Building 5	644.955	6224.971		
Unknown Building 6	644.947	6224.943		
Unknown Building 7	644.947	6224.925		
Unknown Building 8	644.963	6224.933		
Unknown Building 9	644.882	6225.060		
Unknown Building 10	643.566	6225.463		
Unknown Building 11	643.559	6225.463		
Unknown Building 12	643.374	6225.135		
Unknown Building 13	643.404	6225.133		
Unknown Building 14	643.403	6225.138		
Unknown Building 15	643.969	6223.120		
Unknown Building 16	643.834	6224.638		
Unknown Building 17	643.831	6224.618		
Unknown Building 18	644.950	6225.063		
Unknown Building 19	644.943	6225.062		
Unknown Building 20	644.951	6225.052		
Unknown Building 21	644.953	6225.057		
Unknown Building 22	644.933	6225.059		
Unknown Building 23	644.990	6224.918		
Unknown Building 24	644.990	6224.939		
Unknown Building 25	644.873	6225.014		
Unknown Building 26	644.713	6224.856		
Unknown Building 27	644.760	6224.826		
Unknown Building 28	644.816	6224.832		
Unknown Building 29	644.815	6224.853		
Unknown Building 30	644.843	6224.892		
Unknown Building 31	644.871	6224.825		
Unknown Building 32	644.906	6224.940		
Unknown Building 33	644.867	6224.969		
Unknown Building 34	643.667	6225.359		
Unknown Building 35	643.773	6225.267		
Unknown Building 36	643.797	6225.227		
Unknown Building 37	643.806	6225.168		
Unknown Building 38	643.808	6225.162		
Unknown Building 39	643.766	6225.177		
Unknown Building 40	643.683	6225.204		

 Table D.4
 Special receptors at unknown private buildings (in km)

Receptor ID	UTM Easting	UTM Northing
Unknown Building 41	643.681	6225.221
Unknown Building 42	643.634	6225.271
Unknown Building 43	643.633	6225.252
Unknown Building 44	643.894	6223.384
Unknown Building 45	643.856	6223.461
Unknown Building 46	644.033	6223.096
Unknown Building 47	644.849	6225.100
Unknown Building 48	644.708	6225.309
Unknown Building 49	644.412	6224.131
Unknown Building 50	644.406	6224.149
Unknown Building 51	643.639	6225.491
Unknown Building 52	643.623	6225.483
Unknown Building 53	643.691	6225.415
Unknown Building 54	643.709	6225.375
Unknown Building 55	643.700	6225.363
Unknown Building 56	643.664	6225.368
Unknown Building 57	642.358	6232.697
Unknown Building 58	642.370	6232.697
Unknown Building 59	641.707	6232.306
Unknown Building 60	641.716	6232.294
Unknown Building 61	639.639	6231.988
Unknown Building 62	639.669	6231.968
Unknown Building 63	641.692	6232.162
Unknown Building 64	639.724	6231.971
Unknown Building 65	641.692	6232.158
Unknown Building 66	642.008	6232.583
Unknown Building 67	639.730	6231.945
Unknown Building 68	641.731	6232.165
Unknown Building 69	641.983	6232.575
Unknown Building 70	639.694	6231.927
Unknown Building 71	641.719	6232.146
Unknown Building 72	641.977	6232.585
Unknown Building 73	641.745	6232.141
Unknown Building 74	641.764	6232.131
Unknown Building 75	641.939	6232.450
Unknown Building 76	641.800	6232.154
Unknown Building 77	641.817	6232.160
Unknown Building 78	641.827	6232.134
Unknown Building 79	641.220	6232.063
Unknown Building 80	641.784	6232.059
Unknown Building 81	641.219	6232.071

Unknown Building 82 641.751 6232.050 Unknown Building 83 641.219 6232.085	
Unknown Building 83 641.219 6232.085	
Unknown Building 84 641.208 6232.134	
Unknown Building 85 641.842 6232.556	
Unknown Building 86 641.200 6232.134	
Unknown Building 87 641.242 6232.144	
Unknown Building 88 641.273 6232.106	
Unknown Building 89 641.267 6232.081	
Unknown Building 90 641.350 6232.123	
Unknown Building 91 641.913 6232.471	
Unknown Building 92 641.360 6232.149	
Unknown Building 93 641.339 6232.148	
Unknown Building 94 641.334 6232.133	
Unknown Building 95 641.329 6232.136	
Unknown Building 96 641.319 6232.130	
Unknown Building 97 641.716 6232.361	
Unknown Building 98 641.726 6232.330	
Unknown Building 99 642.420 6232.706	
Unknown Building 100 641.719 6232.315	
Unknown Building 101 642.414 6232.697	
Unknown Building 102 641.708 6232.314	
Unknown Building 103 641.729 6229.020	
Unknown Building 104 641.715 6229.015	
Unknown Building 105 641.684 6229.037	
Unknown Building 106 641.664 6229.052	
Unknown Building 107 641.684 6229.050	
Unknown Building 108 641.698 6229.109	
Unknown Building 109 641.689 6228.896	
Unknown Building 110 641.669 6228.915	
Unknown Building 111 641.657 6228.840	
Unknown Building 112 641.665 6228.834	
Unknown Building 113 644.398 6226.367	
Unknown Building 114 643.881 6226.485	
Unknown Building 115 644.029 6226.070	
Unknown Building 116 644.017 6226.086	
Unknown Building 117 642.838 6226.416	
Unknown Building 118 642.945 6226.433	
Unknown Building 119 642.936 6226.428	
Unknown Building 120 642.888 6226.854	
Unknown Building 121 642.854 6226.949	
Unknown Building 122 643.847 6226.177	

Receptor ID	UTM Easting	UTM Northing
Unknown Building 123	643.840	6226.157
Unknown Building 124	643.865	6226.164
Unknown Building 125	643.882	6226.134
Unknown Building 126	643.897	6226.107
Unknown Building 127	643.902	6226.101
Unknown Building 128	643.599	6226.038
Unknown Building 129	643.616	6226.337
Unknown Building 130	643.663	6226.211
Unknown Building 131	643.697	6226.185
Unknown Building 132	643.719	6226.149
Unknown Building 133	643.736	6226.142
Unknown Building 134	643.744	6226.087
Unknown Building 135	643.748	6226.078
Unknown Building 136	643.753	6226.063
Unknown Building 137	641.735	6229.039
Unknown Building 138	643.909	6226.161
Unknown Building 139	643.834	6226.210
Unknown Building 140	643.384	6226.373
Unknown Building 141	643.418	6226.364
Unknown Building 142	642.743	6226.973
Unknown Building 143	642.768	6226.982
Unknown Building 144	642.672	6226.501
Unknown Building 145	642.676	6226.447
Unknown Building 146	643.764	6226.139
Unknown Building 147	643.755	6226.147
Unknown Building 148	643.768	6226.152
Unknown Building 149	643.779	6226.166
Unknown Building 150	643.757	6226.160
Unknown Building 151	643.771	6226.180
Unknown Building 152	643.753	6226.187
Unknown Building 153	643.720	6226.203
Unknown Building 154	643.744	6226.210
Unknown Building 155	643.832	6226.175
Unknown Building 156	643.172	6226.037
Unknown Building 157	643.203	6225.978
Unknown Building 158	643.484	6226.166
Unknown Building 159	643.367	6226.160
Unknown Building 160	643.528	6226.061
Unknown Building 161	643.545	6226.046
Unknown Building 162	643.536	6226.004
Unknown Building 163	643.472	6226.157

Receptor ID	UTM Easting	UTM Northing
Unknown Building 164	643.587	6226.050
Unknown Building 165	643.185	6226.306
Unknown Building 166	643.027	6226.363
Unknown Building 167	641.436	6228.659
Unknown Building 168	642.961	6226.254
Unknown Building 169	644.004	6226.153
Unknown Building 170	643.970	6226.198
Unknown Building 171	643.973	6226.201
Unknown Building 172	643.968	6226.204
Unknown Building 173	643.956	6226.214
Unknown Building 174	641.724	6227.960
Unknown Building 175	641.741	6227.953
Unknown Building 176	641.677	6228.058
Unknown Building 177	641.672	6228.099
Unknown Building 178	641.666	6228.095
Unknown Building 179	643.902	6226.128
Unknown Building 180	643.908	6226.118
Unknown Building 181	643.914	6226.110
Unknown Building 182	643.882	6226.168
Unknown Building 183	643.875	6226.180
Unknown Building 184	639.183	6227.195
Unknown Building 185	639.162	6227.197
Unknown Building 186	638.997	6227.336
Unknown Building 187	639.202	6227.203
Unknown Building 188	643.875	6226.185
Unknown Building 189	643.868	6226.221
Unknown Building 190	643.761	6226.051
Unknown Building 191	643.782	6226.058
Unknown Building 192	643.814	6226.081
Unknown Building 193	643.801	6226.090
Unknown Building 194	643.797	6226.103
Unknown Building 195	643.794	6226.117
Unknown Building 196	643.793	6226.138
Unknown Building 197	643.767	6226.128
Unknown Building 198	643.268	6226.302
Unknown Building 199	643.292	6226.276
Unknown Building 200	643.216	6226.347
Unknown Building 201	643.224	6226.078
Unknown Building 202	643.256	6226.097
Unknown Building 203	643.288	6226.117
Unknown Building 204	643.339	6226.147

Receptor ID	UTM Easting	UTM Northing
Unknown Building 205	643.303	6226.155
Unknown Building 206	622.081	6236.050
Unknown Building 207	622.088	6235.938
Unknown Building 208	622.090	6235.975
Unknown Building 209	621.912	6235.742
Unknown Building 210	622.223	6235.981
Unknown Building 211	622.240	6235.939
Unknown Building 212	643.342	6232.985
Unknown Building 213	642.375	6232.724
Unknown Building 214	642.401	6232.723
Unknown Building 215	643.329	6233.006
Unknown Building 216	642.416	6232.748
Unknown Building 217	643.334	6233.011
Unknown Building 218	642.409	6232.755
Unknown Building 219	643.338	6233.028
Unknown Building 220	642.398	6232.749
Unknown Building 221	643.335	6233.152
Unknown Building 222	642.392	6232.749
Unknown Building 223	643.308	6233.164
Unknown Building 224	642.368	6232.771
Unknown Building 225	643.304	6233.215
Unknown Building 226	642.409	6232.760
Unknown Building 227	643.336	6233.207
Unknown Building 228	643.314	6233.263
Unknown Building 229	626.029	6235.450
Unknown Building 230	643.303	6233.282
Unknown Building 231	643.334	6233.306
Unknown Building 232	643.313	6233.331
Unknown Building 233	643.300	6233.326
Unknown Building 234	643.203	6233.002
Unknown Building 235	643.196	6232.991
Unknown Building 236	643.246	6232.984
Unknown Building 237	643.191	6232.960
Unknown Building 238	643.239	6232.950
Unknown Building 239	643.231	6232.911
Unknown Building 240	646.432	6233.677
Unknown Building 241	646.501	6233.734
Unknown Building 242	626.927	6234.611
Unknown Building 243	643.244	6232.893
Unknown Building 244	643.200	6232.869
Unknown Building 245	646.378	6233.687

Receptor ID	UTM Easting	UTM Northing
Unknown Building 246	643.189	6232.851
Unknown Building 247	646.378	6233.691
Unknown Building 248	643.204	6232.854
Unknown Building 249	646.354	6233.688
Unknown Building 250	643.219	6232.853
Unknown Building 251	646.357	6233.709
Unknown Building 252	643.238	6232.844
Unknown Building 253	643.016	6232.721
Unknown Building 254	643.326	6232.944
Unknown Building 255	643.315	6232.981
Unknown Building 256	642.409	6232.764
Unknown Building 257	642.409	6232.768
Unknown Building 258	642.434	6232.773
Unknown Building 259	642.331	6232.741
Unknown Building 260	642.316	6232.728
Unknown Building 261	642.298	6232.715
Unknown Building 262	642.963	6232.725
Unknown Building 263	621.923	6235.219
Unknown Building 264	621.936	6235.188
Unknown Building 265	621.979	6235.185
Unknown Building 266	625.563	6235.174
Unknown Building 267	625.767	6235.142
Unknown Building 268	627.442	6234.203
Unknown Building 269	626.401	6234.964
Unknown Building 270	626.381	6234.964
Unknown Building 271	626.452	6235.114
Unknown Building 272	626.453	6235.109
Unknown Building 273	626.630	6235.208
Unknown Building 274	626.467	6235.141
Unknown Building 275	626.461	6235.127
Unknown Building 276	626.495	6235.173
Unknown Building 277	626.425	6235.038
Unknown Building 278	621.996	6237.816
Unknown Building 279	622.012	6237.737
Unknown Building 280	622.051	6237.728
Unknown Building 281	622.041	6237.751
Unknown Building 282	622.038	6237.770
Unknown Building 283	622.001	6237.816
Unknown Building 284	622.656	6235.987
Unknown Building 285	625.996	6235.432
Unknown Building 286	625.963	6235.416

Receptor ID	UTM Easting	UTM Northing
Unknown Building 287	625.953	6235.405

Receptor ID	UTM Easting	UTM Northing
Aboriginal Education Center	633.609	6,235.391
lwin Holland	633.853	6,236.278
aldonnel Elementary	642.961	6,232.724
ert Ambrose Elementary	633.698	6,237.244
ert Bowes Middle School	632.695	6,235.420
ard Office	633.204	6,236.129
arlie Lake Elementary	626.866	6,238.375
I Finch Elementary	632.665	6,236.509
. Kearney Middle School	634.341	6,236.419
uncan Cran Elementary	635.468	6,234.477
ole Central Elementary	633.100	6,235.426
cilities & Transportation	632.721	6,235.227
y Learning Centre	632.856	6,235.390
rth Peace Secondary	634.926	6,234.932
ergetic Learning Campus	634.926	6,234.932
orthern BC Distance Education	632.856	6,235.390
ben Learning	632.856	6,235.390
obert Ogilvie Elementary	635.074	6,235.572
udent Support Services	633.204	6,236.129
ylor Elementary	643.346	6,227.033
chnology Services	633.204	6,236.129
oper Halfway Elementary	633.204	6,236.129
onowon Elementary	633.204	6,236.129

 Table D.5
 Special receptors at schools (in km)

Receptor ID	UTM Easting	UTM Northing		
Chunkey Monkey Daycare	634.736	6,235.411		
Oscare Daycare/Oscare Tots	632.978	6,235.501		
The Zoo Daycare	634.054	6,236.232		
Little Kritters Daycare	624.101	6,239.158		
ABC & 123 Family Daycare	635.818	6,234.246		
Baby Bear Daycare	634.940	6,234.929		
Rascals	626.867	6,238.356		
Building Blocks Daycare	632.341	6,235.672		
Kidz Club	635.485	6,234.438		
Northern Lights College Daycare	632.978	6,235.501		
Little Bear Family Daycare	634.746	6,235.411		
Little Peanuts Family Daycare	636.173	6,234.279		
Little Pigs Family Daycare	633.130	6,236.459		
Nanny Norma's Daycare	633.845	6,237.086		
Pitter Patter Day Care	635.907	6,234.821		
Puddle Jumpers	633.845	6,237.086		
Seeds to Sow	634.341	6,235.509		
The Playground Family Daycare	635.666	6,234.938		
The Wiggles and Giggles Daycare	632.583	6,235.781		
TJ's Playhouse	634.310	6,235.425		
Tot's and Tikes Family Daycare	633.117	6,236.197		
The Stepping Stones Centre	635.815	6,235.192		
Aboriginal Head Start	633.003	6,235.697		
Child Development Centre	632.929	6,236.112		
Keeginaw Pre-School	633.173	6,235.032		
Totem Pre-School	635.236	6,235.541		
Rise and Shine Clubhouse	635.020	6,235.584		
Barney and Friends Family Daycare	643.482	6,226.539		
Hudson's Hope Playschool	643.946	6,225.250		

 Table D.6
 Special receptors at child care facilities (in km)

Category	Receptor ID	UTM Easting	UTM Northing
Hospital	Fort St. John Hospital and Health Care	633.715	6,235.551
Hospital	Fort St. John Medical Clinic	633.889	6,235.722
Hospital	Fort St John Pharmacy and Wellness Centre	633.623	6,235.735
Hospital	The Taylor Medical Clinic	643.866	6,225.592
Hospital	ABC Medical Clinic	633.516	6,235.725
Hospital	North Peace Medical Clinic	633.554	6,235.725
Senior Care	Heritage Manor III	633.568	6,236.327
Senior Care	Peace Lutheran Apt #1,	633.439	6,236.439
Senior Care	Peace Lutheran Apt #2,	633.517	6,236.442
Senior Care	The Sunset Home	633.588	6,236.708
Senior Care	North Peace Care Centre	633.381	6,236.534
Senior Care	Abbeyfield Houses of Fort St. John	635.602	6,235.204
Senior Care	New Senior Housing	633.553	6,236.243

Table D.7 Special receptors at health care and senior care facilities (in km)

Site C Clean Energy Project

Volume 2 Appendix L Air Quality Technical Data Report

APPENDIX E

Baseline Emissions

Category/Sector		Pollutant Emissions					
Category			PM ₁₀	TSP	NOx	SOx	со
	Industrial Source	S					
NPRI ID	Facility						
1257	Canadian Forest Products Ltd., Canfor Taylor Pulp	NS	124	125	49.0	NS	36.5
4305	Spectra Energy Transmission, McMahon Gas Plant	2.02	2.02	2.02	193	3,450	89.4
4306	Spectra Energy Transmission, Pine River Gas Plant	10.4	10.4	10.4	872	9,930	229
5124	Spectra Energy Midstream Corporation, Highway Gas Plant	0.65	0.65	0.65	101	29.6	39.8
5141	Tembec, Tembec	NS	1.34	37.9	114	NS	467
5158	West Fraser Mills Ltd., Chetwynd Forest Industries, a Division of West Fraser Mills	6.65	19.1	144	101	NS	10,800
5169	Canadian Forest Products Ltd., Fort St. John	3.57	8.16	65.7	37.9	NS	102
7717	Spectra Energy Transmission, Booster Station 19 - Cabin Lake	0.56	0.56	0.56	47.5	NS	24.2
7720	Spectra Energy Transmission, Station 1 - Taylor	2.19	2.19	2.19	1,410	NS	726
7721	Spectra Energy Transmission, CS No.2, Willow Flats	0.99	0.99	0.99	170	NS	42.7
7909	Canadian Forest Products Limited	1.31	9.86	36.4	NS	NS	NS
7959	Spectra Energy Transmission, McMahon Cogen Plant	9.11	9.11	9.11	320	NS	144
7963	Spectra Energy Transmission, BS 9. Nig Creek	NS	NS	NS	NS	NS	NS
7965	Spectra Energy Transmission, Booster Station 11 - Rigel	NS	NS	NS	33.3	NS	52.1
15713	ConocoPhillips Canada Resources Corp Brassey Comp Station D-013-F	0.96	0.96	0.96	259	NS	370
16406	Devon Canada Corporation, West Eagle 02-01	1.71	1.71	1.71	125	NS	NS
16409	Devon Canada Corporation - Attachie 07-20	0.33	0.33	0.33	NS	NS	NS
17461	Pengrowth Corporation - Tupper #4587 (b-61-J, 93-P-8)	NS	NS	NS	70.7	NS	NS
		1	1	1	1	1	

Table E.1Existing emissions in the technical study area including individual industrial sources
(in tonnes/year),

Category	/Sector			Pollutan	t Emissio	ons	
Category	/Sector	PM _{2.5}	PM ₁₀	TSP	NOx	SOx	со
	Industrial Source	s					
NPRI ID	Facility						
17885	TAQA North Ltd., Monias (11-13)	0.46	0.46	0.46	264	NS	NS
18238	Shell Canada Upstream, Sunset Battery 2-17	NS	NS	NS	NS	109	NS
18497	Canadian Natural Resources Limited, CNSL Monias 06-14-82-21	NS	NS	NS	67.0	NS	NS
18498	Canadian Natural Resources Limited, CNSL Monias 11-13-83-21	0.34	0.34	0.34	117	NS	NS
18718	Devon Canada Corporation, Cecil 06-14	0.62	0.62	0.62	90.3	NS	NS
18741	Devon Canada Corporation, Monias 14-14	0.50	0.50	0.50	200	NS	36.0
19733	Suncor Energy Inc., Suncor Kobes Battery (B-24- A/94-B-9)	NS	NS	NS	133	247	NS
19845	ARC Resources, Septimus Well 02-35- BCBT11202	0.95	0.95	0.95	NS	NS	NS
19953	AltaGas Ltd Blair Creek Comp Stn d-058-F	NS	NS	NS	41.0	NS	27.0
20104	Canfor Pulp Limited Partnership, Peace Valley OSB	21.3	43.3	81.8	84.7	NS	467
20175	Western Coal Corp, Willow Creek Mine	314	2,610	6,070	206	70.3	768
20201	Shell Canada Upstream, Brassey Gas Processing and Production IF-a	0.70	0.70	0.70	227	NS	158
20202	Shell Canada Upstream, Groundbirch Gas Processing and Production IF-a	5.45	5.45	5.45	371	NS	419
20208	Shell Canada Upstream, Sundown Gas Processing and Production IF-a	0.46	0.46	0.46	97.1	NS	67.6
20210	Shell Canada Upstream, Sunset Gas Processing and Production IF-a	2.18	2.18	2.18	92.7	75.7	67.1
20211	Tourmaline Oil Corp, Sunrise 1-18-80-17 W6	NS	NS	NS	23.3	NS	NS
20212	Tourmaline Oil Corp, Sunrise 3-18-80-17 W6	0.49	0.49	0.49	35.4	NS	31.7
20214	Alliance Pipeline Ltd., Taylor Compressor Station	NS	NS	NS	44.9	NS	NS
20216	Apache Canada Ltd., d-84-J/93-P-7	NS	NS	NS	52.9	NS	NS
21225	Suncor Energy - Commotion a-23-D/93-P-12	NS	NS	NS	90.5	NS	86.1

Cotonom	/Sector			Pollutant	t Emissio	ns	
Category	Sector	PM _{2.5}	PM ₁₀	TSP	NOx	SOx	со
	Industrial Source	s					
NPRI ID	Facility						
22080	Canadian Natural Resources Limited, CNSL Monias 14-9-82-21	NS	NS	NS	NS	NS	32.5
23471	Aux Sable Canada LP, Septimus Sweet Gas Plant 12-27	0.95	0.95	0.95	67.9	NS	33.6
23493 Devon Canada Corporation - ANDERSON CECIL 15-24-84-18 #1		NS	NS	NS	88.6	NS	NS
23836	Canadian Natural Resources Limited, CNSL Septimus 08-22-81-19	0.32	0.32	0.32	NS	NS	NS
24059	Talisman Energy, Talisman Farrell Creek B-88- I/94B-1	1.47	1.47	1.47	60.0	NS	88.6
Sub-total	Industrial Sources	391	2,860	6,600	6,360	13,900	15,400
	Area Sour	ces					
Agricultur	e	347	1,240	2,510	1,370	39.5	1,260
Residenti	al Wood Heating	193	194	205	22.3	3.19	1,180
Forest Fir	es	329	366	478	48.8	1.22	2,490
Prescribe	d Burning	6.16	6.59	9.88	1.18	0.03	59.0
Other Are	a Sources	220	226	294	60.7	10.5	1,250
Sub-total	Area Sources	1,100	2,030	3,500	1,500	54.4	6,240
	Mobile Sou	rces					
Aircraft		8.70	8.92	9.04	43.3	2.10	310
Heavy-Du	ity Diesel Vehicles	30.6	34.9	34.9	927	17.1	210
Heavy-Du	ity Gasoline Vehicles	0.26	0.37	0.38	19.7	0.44	115
Light-Dut	y Diesel Vehicles	4.02	4.63	4.64	33.3	8.24	27.7
Light-Dut	y Gasoline Trucks	2.76	4.75	4.86	236	8.24	4,850
Light-Dut	y Gasoline Vehicles	1.85	3.58	3.65	246	6.40	4,280
Marine Ve	essels	4.43	4.81	4.81	12.3	0.42	270
Railways		27.1	29.4	29.4	1,240	15.2	236
Other Mo	bile Sources	678	1,590	2,970	3,140	7,560	6,230
Sub-total	Mobile Sources	758	1,680	3,060	5,900	7,620	16,500
Total		2,250	6,570	13,200	13,800	21,600	38,100

NOTES:

All numbers were rounded to three significant figures but no more than two decimal places.

Sources: National Pollutant Release Inventory 2010 (industrial sources) and BCMOE 2000 (all other sources).

Emissions of TSP (in tonnes per year) less than PM₁₀ reported in NPRI were set equal to PM₁₀ emissions.

"NS": not specified; NPRI reporting thresholds in tonnes/year are 0.3 (PM_{2.5}), 0.5 (PM₁₀), and 20 (all other pollutants).

Catoman			Poll	utant E	missio	ons	
Category	Sector	PM _{2.5}	PM ₁₀	TSP	NOx	SOx	со
	Industrial Sources						
NPRI ID	Facility		1	1	1	1	1
1257	Canadian Forest Products Ltd., Canfor Taylor Pulp	NS	1.89	0.95	0.36	NS	0.10
4305	Spectra Energy Transmission, McMahon Gas Plant	0.09	0.03	0.02	1.40	16.0	0.23
4306	Spectra Energy Transmission, Pine River Gas Plant	0.46	0.16	0.08	6.32	46.0	0.60
5124	Spectra Energy Midstream Corporation, Highway Gas Plant	0.03	0.01	0.00	0.73	0.14	0.10
5141	Tembec, Tembec	NS	0.02	0.29	0.83	NS	1.23
5158	West Fraser Mills Ltd., Chetwynd Forest Industries, a Division of West Fraser Mills	0.30	0.29	1.09	0.73	NS	28.3
5169	Canadian Forest Products Ltd., Fort St. John	0.16	0.12	0.50	0.27	NS	0.27
7717	Spectra Energy Transmission, Booster Station 19 - Cabin Lake	0.02	0.01	0.00	0.34	NS	0.06
7720	Spectra Energy Transmission, Station 1 - Taylor	0.10	0.03	0.02	10.2	NS	1.91
7721	Spectra Energy Transmission, CS No.2, Willow Flats	0.04	0.02	0.01	1.23	NS	0.11
7909	Canadian Forest Products Limited	0.06	0.15	0.28	NS	NS	NS
7959	Spectra Energy Transmission, McMahon Cogen Plant	0.40	0.14	0.07	2.32	NS	0.38
7963	Spectra Energy Transmission, BS 9. Nig Creek	NS	NS	NS	NS	NS	NS
7965	Spectra Energy Transmission, Booster Station 11 - Rigel	NS	NS	NS	0.24	NS	0.14
15713	ConocoPhillips Canada Resources Corp Brassey Comp Station D-013-F	0.04	0.01	0.01	1.88	NS	0.97
16406	Devon Canada Corporation, West Eagle 02-01	0.08	0.03	0.01	0.91	NS	NS
16409	Devon Canada Corporation - Attachie 07-20	0.01	0.01	0.00	NS	NS	NS
17461	Pengrowth Corporation - Tupper #4587 (b-61-J, 93-P-8)	NS	NS	NS	0.51	NS	NS

Table E.2Existing emissions in the technical study area including individual industrial sources
(in percent of total),

Cotogory	/Sactor		Poll	utant E	missio	ons	
Category	/3001	PM _{2.5}	PM ₁₀	TSP	NOx	SOx	со
	Industrial Sources						
NPRI ID	Facility						1
17885	TAQA North Ltd., Monias (11-13)	0.02	0.01	0.00	1.91	NS	NS
18238	Shell Canada Upstream, Sunset Battery 2-17	NS	NS	NS	NS	0.50	NS
18497	Canadian Natural Resources Limited, CNSL Monias 06-14-82-21	NS	NS	NS	0.49	NS	NS
18498	Canadian Natural Resources Limited, CNSL Monias 11-13- 83-21	0.02	0.01	0.00	0.85	NS	NS
18718	Devon Canada Corporation, Cecil 06-14	0.03	0.01	0.00	0.65	NS	NS
18741	Devon Canada Corporation, Monias 14-14	0.02	0.01	0.00	1.45	NS	0.09
19733	Suncor Energy Inc., Suncor Kobes Battery (B-24-A/94-B-9)	NS	NS	NS	0.96	1.14	NS
19845	ARC Resources, Septimus Well 02-35-BCBT11202	0.04	0.01	0.01	NS	NS	NS
19953	AltaGas Ltd Blair Creek Comp Stn d-058-F	NS	NS	NS	0.30	NS	0.07
20104	Canfor Pulp Limited Partnership, Peace Valley OSB	0.95	0.66	0.62	0.61	NS	1.23
20175	Western Coal Corp, Willow Creek Mine	14.0	39.7	46.0	1.49	0.33	2.02
20201	Shell Canada Upstream, Brassey Gas Processing and Production IF-a	0.03	0.01	0.01	1.64	NS	0.41
20202	Shell Canada Upstream, Groundbirch Gas Processing and Production IF-a	0.24	0.08	0.04	2.69	NS	1.10
20208	Shell Canada Upstream, Sundown Gas Processing and Production IF-a	0.02	0.01	0.00	0.70	NS	0.18
20210	Shell Canada Upstream, Sunset Gas Processing and Production IF-a	0.10	0.03	0.02	0.67	0.35	0.18
20211	Tourmaline Oil Corp, Sunrise 1-18-80-17 W6	NS	NS	NS	0.17	NS	NS
20212	Tourmaline Oil Corp, Sunrise 3-18-80-17 W6	0.02	0.01	0.00	0.26	NS	0.08
20214	Alliance Pipeline Ltd., Taylor Compressor Station	NS	NS	NS	0.33	NS	NS
20216	Apache Canada Ltd., d-84-J/93-P-7	NS	NS	NS	0.38	NS	NS
21225	Suncor Energy - Commotion a-23-D/93-P-12	NS	NS	NS	0.66	NS	0.23
		1	1	1	1	1	

Cotono			Poll	utant E	missio	ons	
Category	/Sector	PM _{2.5}	PM ₁₀	TSP	NOx	SOx	со
	Industrial Sources						
NPRI ID	Facility						
22080	Canadian Natural Resources Limited, CNSL Monias 14-9- 82-21	NS	NS	NS	NS	NS	0.09
23471	Aux Sable Canada LP, Septimus Sweet Gas Plant 12-27	0.04	0.01	0.01	0.49	NS	0.09
23493	Devon Canada Corporation - ANDERSON CECIL 15-24-84- 18 #1	NS	NS	NS	0.64	NS	NS
23836	Canadian Natural Resources Limited, CNSL Septimus 08- 22-81-19	INS INS <td>NS</td> <td>NS</td>			NS	NS	
24059	Talisman Energy, Talisman Farrell Creek B-88-I/94B-1	0.07	0.02	0.01	0.43	NS	0.23
Sub-tota	Industrial Sources	17.4	43.5	50.0	46.1	64.4	40.4
	Area Sources						1
Agricultur	e	15.4	18.9	19.0	9.93	0.18	3.31
Residenti	al Wood Heating	8.58	2.95	1.55	0.16	0.01	3.10
Forest Fir	res	14.6	5.57	3.62	0.35	0.01	6.54
Prescribe	d Burning	0.27	0.10	0.07	0.01	0.00	0.15
Other Are	a Sources	9.78	3.44	2.23	0.44	0.05	3.28
Sub-tota	Area Sources	48.7	30.9	26.5	10.9	0.25	16.4
	Mobile Sources						
Aircraft		0.39	0.14	0.07	0.31	0.01	0.81
Heavy-Du	Ity Diesel Vehicles	1.36	0.53	0.26	6.72	0.08	0.55
Heavy-Du	ity Gasoline Vehicles	0.01	0.01	0.00	0.14	0.00	0.30
Light-Dut	y Diesel Vehicles	0.18	0.07	0.04	0.24	0.04	0.07
Light-Dut	y Gasoline Trucks	0.12	0.07	0.04	1.71	0.04	12.7
Light-Dut	y Gasoline Vehicles	0.08	0.05	0.03	1.78	0.03	11.2
Marine V	essels	0.20	0.07	0.04	0.09	0.00	0.71
Railways		1.20	0.45	0.22	8.99	0.07	0.62
Other Mo	bile Sources	30.1	24.2	22.5	22.8	35.0	16.4
Sub-tota	Mobile Sources	33.7	25.6	23.2	42.7	35.3	43.4
Total		100	100	100	100	100	100

NOTES:

All numbers were rounded to three significant figures but no more than two decimal places.

Sources: National Pollutant Release Inventory 2010 (industrial sources) and BCMOE 2000 (all other sources).

Emissions of TSP (in tonnes per year) less than PM_{10} reported in NPRI were set equal to PM_{10} emissions before percentages were calculated for this table.

"NS": not specified; NPRI reporting thresholds in tonnes/year are 0.3 (PM_{2.5}), 0.5 (PM₁₀), and 20 (all other pollutants).

Cotonom	/Sector		P	ollutant	Emissio	ons	
Category	/Sector	PM _{2.5}	PM ₁₀	TSP	NO _x	SOx	со
	Industrial Sources						
NPRI ID	Facility						
1257	Canadian Forest Products Ltd., Canfor Taylor Pulp	NS	124	125	49.0	NS	36.5
4305	Spectra Energy Transmission, McMahon Gas Plant	2.02	2.02	2.02	193	3,450	89.4
5124	Spectra Energy Midstream Corporation, Highway Gas Plant	0.65	0.65	0.65	101	29.6	39.8
5169	Canadian Forest Products Ltd., Fort St. John	3.57	8.16	65.7	37.9	NS	102
7717	Spectra Energy Transmission, Booster Station 19 - Cabin Lake	0.56	0.56	0.56	47.5	NS	24.2
7720	Spectra Energy Transmission, Station 1 - Taylor	2.19	2.19	2.19	1,410	NS	726
7959	Spectra Energy Transmission, McMahon Cogen Plant	9.11	9.11	9.11	320	NS	144
7963	Spectra Energy Transmission, BS 9. Nig Creek	NS	NS	NS	NS	NS	NS
7965	Spectra Energy Transmission, Booster Station 11 - Rigel	NS	NS	NS	33.3	NS	52.1
16406	Devon Canada Corporation, West Eagle 02-01	1.71	1.71	1.71	125	NS	NS
18718	Devon Canada Corporation, Cecil 06-14	0.62	0.62	0.62	90.3	NS	NS
18741	Devon Canada Corporation, Monias 14-14	0.50	0.50	0.50	200	NS	36.0
19733	Suncor Energy Inc., Suncor Kobes Battery (B-24-A/94- B-9)	NS	NS	NS	133	247	NS
19953	AltaGas Ltd Blair Creek Comp Stn d-058-F	NS	NS	NS	41.0	NS	27.0
20104	Canfor Pulp Limited Partnership, Peace Valley OSB	21.3	43.3	81.8	84.7	NS	467
23493	Devon Canada Corporation - ANDERSON CECIL 15- 24-84-18 #1	NS	NS	NS	88.6	NS	NS
Sub-total	Industrial Sources	42.0	193	290	2,950	3,730	1,740
	Area Sources						
Agricultur	e	49.2	176	355	194	5.60	178
Residenti	al Wood Heating	133	134	141	15.4	2.20	815
Forest Fir	res	0	0	0	0	0	0
Prescribe	d Burning	0	0	0	0	0	0
Other Are	a Sources	84.4	87.2	116	31.3	6.33	478
Sub-total	Area Sources	267	397	612	241	14.1	1,47

Table E.3Existing emissions in the dispersion modelling study area including individual
industrial sources (in tonnes/year),

		Р	ollutant	Emissio	ons	
Category/Sector	PM _{2.5}	PM ₁₀	TSP	NOx	SOx	со
	Mobile Sources					
Aircraft	8.70	8.92	9.04	43.3	2.10	310
Heavy-Duty Diesel Vehicles	4.40	5.01	5.02	133	2.46	30.2
Heavy-Duty Gasoline Vehicles	0.04	0.05	0.05	2.84	0.06	16.5
Light-Duty Diesel Vehicles	0.69	0.80	0.80	5.72	1.31	4.77
Light-Duty Gasoline Trucks	0.44	0.76	0.77	37.5	1.31	771
Light-Duty Gasoline Vehicles	0.33	0.64	0.65	43.9	1.14	764
Marine Vessels	0	0	0	0	0	0
Railways	5.23	5.68	5.68	239	2.94	45.6
Other Mobile Sources	151	281	489	1,060	3,510	2,570
Sub-total Mobile Sources	171	303	511	1,570	3,520	4,510
Total	480	893	1,410	4,760	7,260	7,720

NOTES:

All numbers were rounded to three significant figures but no more than two decimal places.

Sources: National Pollutant Release Inventory 2010 (industrial sources) and BCMOE 2000 (all other sources).

Emissions of TSP (in tonnes per year) less than PM₁₀ reported in NPRI were set equal to PM₁₀ emissions.

"NS": not specified; NPRI reporting thresholds in tonnes/year are 0.3 (PM_{2.5}), 0.5 (PM₁₀), and 20 (all other pollutants).

Cotono	/Santar		Poll	utant E	missio	ons	
Category	Sector	PM _{2.5}	PM ₁₀	TSP	NOx	SOx	со
	Industrial Sources						
NPRI ID	Facility						
1257	Canadian Forest Products Ltd., Canfor Taylor Pulp	NS	13.9	8.87	1.03	NS	0.47
4305	Spectra Energy Transmission, McMahon Gas Plant	0.42	0.23	0.14	4.05	47.5	1.16
5124	Spectra Energy Midstream Corporation, Highway Gas Plant	0.13	0.07	0.05	2.12	0.41	0.5
5169	Canadian Forest Products Ltd., Fort St. John	0.74	0.91	4.66	0.80	NS	1.3
7717	Spectra Energy Transmission, Booster Station 19 - Cabin Lake	0.12	0.06	0.04	1.00	NS	0.3 [,]
7720	Spectra Energy Transmission, Station 1 - Taylor	0.46	0.25	0.16	29.6	NS	9.40
7959	Spectra Energy Transmission, McMahon Cogen Plant	1.90	1.02	0.65	6.72	NS	1.8
7963	Spectra Energy Transmission, BS 9. Nig Creek	NS	NS	NS	NS	NS	NS
7965	Spectra Energy Transmission, Booster Station 11 - Rigel	NS	NS	NS	0.70	NS	0.6
16406	Devon Canada Corporation, West Eagle 02-01	0.36	0.19	0.12	2.63	NS	NS
18718	Devon Canada Corporation, Cecil 06-14	0.13	0.07	0.04	1.90	NS	NS
18741	Devon Canada Corporation, Monias 14-14	0.10	0.06	0.04	4.20	NS	0.4
19733	Suncor Energy Inc., Suncor Kobes Battery (B-24-A/94-B-9)	NS	NS	NS	2.79	3.40	NS
19953	AltaGas Ltd Blair Creek Comp Stn d-058-F	NS	NS	NS	0.86	NS	0.3
20104	Canfor Pulp Limited Partnership, Peace Valley OSB	4.44	4.85	5.80	1.78	NS	6.0
23493	Devon Canada Corporation - ANDERSON CECIL 15-24-84- 18 #1	NS	NS	NS	1.86	NS	NS
Sub-tota	Industrial Sources	8.80	21.6	20.6	62.1	51.3	22.0
	Area Sources		-		-	-	
Agricultur	e	10.3	19.7	25.2	4.08	0.08	2.3
Residenti	al Wood Heating	27.7	15.0	10.0	0.32	0.03	10.
Forest Fir	es	0	0	0	0	0	0
Prescribe	d Burning	0	0	0	0	0	0
Other Are	a Sources	17.6	9.76	8.23	0.66	0.09	6.1
Sub-tota	Area Sources	55.5	44.5	43.4	5.06	0.19	19.
	Mobile Sources						I
Aircraft		1.81	1.00	0.64	0.91	0.03	4.0

Table E.4Existing emissions in the dispersion modelling study area (including individual
industrial sources (in percent of total).

Cotomore / Cootom		Poll	utant E	missio	ons	
Category/Sector	PM _{2.5}	PM ₁₀	TSP	NOx	SOx	со
Heavy-Duty Diesel Vehicles	0.92	0.56	0.36	2.79	0.03	0.39
Heavy-Duty Gasoline Vehicles	0.01	0.01	0.00	0.06	0.00	0.21
Light-Duty Diesel Vehicles	0.14	0.09	0.06	0.12	0.02	0.06
Light-Duty Gasoline Trucks	0.09	0.09	0.05	0.79	0.02	9.99
Light-Duty Gasoline Vehicles	0.07	0.07	0.05	0.92	0.02	9.90
Marine Vessels	0	0	0	0	0	0
Railways	1.09	0.64	0.40	5.02	0.04	0.59
Other Mobile Sources	31.5	31.5	34.7	22.3	48.3	33.3
Subtotal Mobile Sources	35.6	33.9	36.2	32.9	48.5	58.4
Total	100	100	100	100	100	100

NOTES:

All numbers were rounded to three significant figures but no more than two decimal places.

Sources: National Pollutant Release Inventory 2010 (industrial sources) and BCMOE 2000 (all other sources).

Emissions of TSP (in tonnes per year) less than PM_{10} reported in NPRI were set equal to PM_{10} emissions before percentages were calculated for this table.

"NS": not specified; NPRI reporting thresholds in tonnes/year are 0.3 (PM_{2.5}), 0.5 (PM₁₀), and 20 (all other pollutants).

REFERENCES

British Columbia Ministry of Environment (BCMOE). 2000. Emission Inventory.

National Pollutant Release Inventory. 2010. Online: http://www.ec.gc.ca/inrp-npri/ (Accessed July 2012).

Site C Clean Energy Project

Volume 2 Appendix L Air Quality Technical Data Report

APPENDIX F

Project Emissions

Table F.1 Project emissions of TSP from dam construction (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	111	173	224	148	184	118	66.5	0.251
Drilling	16.9	44.1	22.6	10.8	31.1	32.9	2.66	-
Explosives	-	-	-	-	-	-	-	-
Blasting	0.770	2.31	2.31	1.54	1.54	1.54	1.54	-
Material Handling	2.51	3.75	4.62	4.03	2.34	1.72	2.74	0.0230
Material Processing	0.742	15.8	29.6	32.9	9.99	12.1	8.72	-
Crushing	0.00317	0.0657	0.121	0.137	0.0317	0.0431	0.0273	-
Stockpile Wind Erosion	-	21.5	48.0	48.0	48.0	43.9	48.0	-
Grading	61.0	117	167	114	125	75.0	49.6	-
Scraping	13.3	24.1	45.6	37.3	30.7	16.5	3.93	-
Unpaved Roads	5,524	6,464	8,690	8,334	9,416	9,310	7,704	2,002
Paved Roads	5.37	19.2	10.5	10.5	10.5	10.5	10.5	10.5
Vehicles	0.673	1.03	1.10	1.38	1.49	2.30	2.34	0.542
Diesel Equipment	11.0	17.9	27.0	23.6	25.0	21.9	15.6	3.62
Diesel Generators	0.124	0.146	0.138	0.201	0.124	0.168	0.107	-
Total	5,747	6,904	9,273	8,766	9,886	9,647	7,916	2,017

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.2 Project emissions of PM₁₀ from dam construction (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	28.2	38.7	50.5	36.5	47.3	33.4	14.0	0.0423
Drilling	8.01	20.9	10.7	5.11	14.7	15.5	1.26	-
Explosives	-	-	-	-	-	-	-	-
Blasting	0.400	1.20	1.20	0.801	0.801	0.801	0.801	-
Material Handling	1.19	1.77	2.18	1.91	1.11	0.815	1.29	0.0109
Material Processing	0.235	5.00	9.42	10.4	3.23	3.89	2.82	-
Crushing	0.00141	0.0292	0.0536	0.0608	0.0141	0.0192	0.0121	-
Stockpile Wind Erosion	-	10.8	24.0	24.0	24.0	21.9	24.0	-
Grading	17.9	34.1	48.9	33.2	36.5	21.9	14.5	-
Scraping	6.27	11.4	21.5	17.6	14.5	7.83	1.86	-
Unpaved Roads	1,571	1,838	2,471	2,370	2,678	2,647	2,191	569
Paved Roads	1.03	3.68	2.01	2.01	2.01	2.01	2.01	2.01
Vehicles	0.673	1.03	1.10	1.38	1.49	2.30	2.34	0.542
Diesel Equipment	11.0	17.9	27.0	23.6	25.0	21.9	15.6	3.62
Diesel Generators	0.124	0.146	0.138	0.201	0.124	0.168	0.107	-
Total	1,646	1,985	2,670	2,527	2,849	2,779	2,272	575

NOTE:

Table F.3 Project emissions of $PM_{2.5}$ from dam construction (in tonnes/year)

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	11.6	18.1	23.6	15.6	19.3	12.4	6.98	0.0264
Drilling	1.21	3.16	1.62	0.773	2.23	2.35	0.190	-
Explosives	-	-	-	-	-	-	-	-
Blasting	0.0231	0.0693	0.0693	0.0462	0.0462	0.0462	0.0462	-
Material Handling	0.180	0.268	0.331	0.289	0.168	0.123	0.196	0.00165
Material Processing	0.0326	0.685	1.28	1.42	0.402	0.498	0.347	-
Crushing	0.000212	0.00438	0.00804	0.00912	0.00212	0.00287	0.00182	-
Stockpile Wind Erosion	-	1.62	3.60	3.60	3.60	3.29	3.60	-
Grading	1.89	3.62	5.18	3.52	3.87	2.32	1.54	-
Scraping	0.949	1.73	3.26	2.67	2.20	1.19	0.281	-
Unpaved Roads	157	184	247	237	268	265	219	56.9
Paved Roads	0.249	0.890	0.486	0.486	0.486	0.486	0.486	0.486
Vehicles	0.482	0.740	0.787	0.981	1.04	1.67	1.72	0.404
Diesel Equipment	10.7	17.4	26.2	22.9	24.2	21.2	15.1	3.52
Diesel Generators	0.120	0.142	0.134	0.195	0.121	0.163	0.104	-
Total	184	232	314	289	326	311	250	61.3

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.4 Project emissions of NO_X from dam construction (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	7.29	9.21	3.21	1.54	4.43	4.68	0.379	-
Blasting	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Crushing	-	-	-	-	-	-	-	-
Stockpile Wind Erosion	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	5.65	8.05	7.96	9.27	9.87	19.1	20.5	6.45
Diesel Equipment	134	212	324	269	284	254	174	30.5
Diesel Generators	1.00	1.25	1.18	1.79	1.20	1.61	1.03	-
Total	148	231	336	282	300	279	196	37.0

NOTE:

Table F.5 Project emissions of SO_X from dam construction (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	0.489	0.898	0.402	0.193	0.554	0.585	0.0474	-
Blasting	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Crushing	-	-	-	-	-	-	-	-
Stockpile Wind Erosion	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.0408	0.0612	0.0675	0.0853	0.095	0.125	0.118	0.0242
Diesel Equipment	0.206	0.328	0.491	0.415	0.439	0.389	0.272	0.0564
Diesel Generators	0.00159	0.00198	0.00212	0.00303	0.00180	0.00241	0.00154	-
Total	0.737	1.29	0.963	0.696	1.09	1.10	0.439	0.0806

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.6 Project emissions of CO from dam construction (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	20.0	32.5	13.7	6.55	18.8	19.9	1.61	-
Blasting	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Crushing	-	-	-	-	-	-	-	-
Stockpile Wind Erosion	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	38.4	55.2	52.1	63.6	69.4	77.4	60.8	14.0
Diesel Equipment	56.4	90.5	136	116	126	111	78.3	17.3
Diesel Generators	0.770	0.872	0.469	0.763	0.578	0.779	0.498	-
Total	116	179	202	187	215	209	141	31.3

NOTE:

Table F.7 Project emissions of TSP from vehicles-in-transit within the technical study area (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Vehicles	0.483	0.483	0.455	0.446	0.437	0.665	1.78	0.373
Paved Roads	99.6	92.9	93.2	298	119	113	373	57.1
Total	100	93.4	93.7	298	119	114	375	57.5

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.8 Project emissions of PM₁₀ from vehicles-in-transit within the technical study area (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Vehicles	0.483	0.483	0.455	0.446	0.437	0.665	1.78	0.373
Paved Roads	19.1	17.8	17.9	57.2	22.9	21.6	71.6	11.0
Total	19.6	18.3	18.4	57.6	23.3	22.3	73.4	11.4

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.9 Project emissions of PM_{2.5} from vehicles-in-transit within the technical study area (in tonnes/year)

Emission Source Year 1 2014	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Vehicles	0.395	0.395	0.370	0.361	0.351	0.556	1.55	0.296
Paved Roads	4.62	4.32	4.33	13.8	5.53	5.24	17.3	2.65
Total	5.02	4.72	4.70	14.2	5.88	5.80	18.9	2.95

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.10 Project emissions of NO_x from vehicles-in-transit within the technical study area (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Vehicles	5.85	5.86	5.08	4.68	4.29	9.14	32.5	3.20
Paved Roads	-	-	-	-	-	-	-	-
Total	5.85	5.86	5.08	4.68	4.29	9.14	32.5	3.20

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.11 Project emissions of SO_x from vehicles-in-transit within the technical study area (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Vehicles	0.0381	0.0381	0.0372	0.0373	0.0366	0.0455	0.0930	0.0334
Paved Roads	-	-	-	-	-	-	-	-
Total	0.0381	0.0381	0.0372	0.0373	0.0366	0.0455	0.0930	0.0334

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.12 Project emissions of CO from vehicles-in-transit within the technical study area (in tonnes/year)

Emission Source Year 1 2014	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Vehicles	27.6	27.8	23.3	22.4	21.2	21.1	24.5	16.7
Paved Roads	-	-	-	-	-	-	-	-
Total	27.6	27.8	23.3	22.4	21.2	21.1	24.5	16.7

NOTE:

Table F.13 Project emissions of TSP from vehicles-in-transit within the DMSA (in tonnes/year)

Emission Source 2014	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Vehicles	0.148	0.149	0.138	0.137	0.134	0.131	0.129	0.109
Paved Roads	24.9	22.8	14.7	21.9	21.9	21.9	21.9	18.4
Total	25.0	22.9	14.8	22.0	22.0	22.0	22.0	18.5

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.14 Project emissions of PM₁₀ from vehicles-in-transit within the DMSA (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Vehicles	0.148	0.149	0.138	0.137	0.134	0.131	0.129	0.109
Paved Roads	4.77	4.38	2.83	4.20	4.20	4.20	4.20	3.54
Total	4.92	4.53	2.97	4.34	4.33	4.33	4.33	3.65

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.15 Project emissions of PM2.5 from vehicles-in-transit within the DMSA (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Vehicles	0.117	0.117	0.108	0.106	0.103	0.101	0.099	0.0827
Paved Roads	1.15	1.06	0.684	1.02	1.02	1.02	1.02	0.855
Total	1.27	1.18	0.792	1.13	1.12	1.12	1.12	0.938

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.16 Project emissions of NO_x from vehicles-in-transit within the DMSA (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Vehicles	1.60	1.62	1.37	1.30	1.20	1.10	1.01	0.842
Paved Roads	-	-	-	-	-	-	-	-
Total	1.60	1.62	1.37	1.30	1.20	1.10	1.01	0.842

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.17 Project emissions of SO_X from vehicles-in-transit within the DMSA (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Vehicles	0.0110	0.0110	0.0106	0.0108	0.0106	0.0105	0.0103	0.00902
Paved Roads	-	-	-	-	-	-	-	-
Total	0.0110	0.0110	0.0106	0.0108	0.0106	0.0105	0.0103	0.00902

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.18 Project emissions of CO from vehicles-in-transit within the DMSA (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Vehicles	8.26	8.42	6.75	6.78	6.45	6.12	5.59	4.67
Paved Roads	-	-	-	-	-	-	-	-
Total	8.26	8.42	6.75	6.78	6.45	6.12	5.59	4.67

NOTE:

Table F.19 Project emissions of TSP from Wuthrich Quarry (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
				2017	2010	2019	2020	-
Bulldozing	7.31	7.99	5.38	-	-	-	-	0.350
Drilling	3.08	3.37	2.27	-	-	-	-	0.148
Explosives	-	-	-	-	-	-	-	-
Blasting	1.54	1.54	0.770	-	-	-	-	0.770
Material Processing	0.513	0.561	0.378	-	-	-	-	0.0245
Grading	0.333	0.364	0.245	-	-	-	-	0.0159
Scraping	0.971	1.06	0.714	-	-	-	-	0.0465
Unpaved Roads	75.3	82.3	55.4	-	-	-	-	3.75
Paved Roads	0.00975	0.0108	0.0108	-	-	-	-	0.0108
Vehicles	0.00176	0.00189	0.00125	-	-	-	-	0.000382
Diesel Equipment	0.614	0.718	0.463	-	-	-	-	0.0233
Diesel Generators	0.0162	0.0186	0.0121	-	-	-	-	0.000690
Total	89.7	97.9	65.6	-	-	-	-	5.14

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.20 Project emissions of PM₁₀ from Wuthrich Quarry (in tonnes/year)

F	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	1.23	1.35	0.905	-	-	-	-	0.0589
Drilling	1.46	1.59	1.07	-	-	-	-	0.0698
Explosives	-	-	-	-	-	-	-	-
Blasting	0.801	0.801	0.400	-	-	-	-	0.400
Material Processing	0.188	0.206	0.138	-	-	-	-	0.00900
Grading	0.0975	0.107	0.0717	-	-	-	-	0.00466
Scraping	0.459	0.502	0.338	-	-	-	-	0.0220
Unpaved Roads	21.4	23.4	15.8	-	-	-	-	1.07
Paved Roads	0.00187	0.00208	0.00208	-	-	-	-	0.00208
Vehicles	0.00176	0.00189	0.00125	-	-	-	-	0.000382
Diesel Equipment	0.614	0.718	0.463	-	-	-	-	0.0233
Diesel Generators	0.0162	0.0186	0.0121	-	-	-	-	0.000690
Total	26.3	28.7	19.2	-	-	-	-	1.66

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.21 Project emissions of PM_{2.5} from Wuthrich Quarry (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	0.768	0.839	0.565	-	-	-	-	0.0367
Drilling	0.221	0.241	0.162	-	-	-	-	0.0106
Explosives	-	-	-	-	-	-	-	-
Blasting	0.0462	0.0462	0.0231	-	-	-	-	0.0231
Material Processing	0.0282	0.0309	0.0208	-	-	-	-	0.00135
Grading	0.0103	0.0113	0.00760	-	-	-	-	0.000494
Scraping	0.0696	0.0760	0.0512	-	-	-	-	0.00333
Unpaved Roads	2.14	2.34	1.58	-	-	-	-	0.107
Paved Roads	0.000453	0.00050	0.000503	-	-	-	-	0.000503
Vehicles	0.00118	0.00127	0.000813	-	-	-	-	0.000262
Diesel Equipment	0.596	0.697	0.449	-	-	-	-	0.0226
Diesel Generators	0.0157	0.0180	0.0117	-	-	-	-	0.000669
Total	3.90	4.30	2.87	-	-	-	-	0.207

NOTE:

Table F.22 Project emissions of NO_X from Wuthrich Quarry (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	0.878	0.960	0.646	-	-	-	-	0.0420
Blasting	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.0221	0.0239	0.0155	-	-	-	-	0.00209
Diesel Equipment	5.54	6.06	4.07	-	-	-	-	0.264
Diesel Generators	0.167	0.183	0.123	-	-	-	-	0.00794
Total	6.61	7.23	4.85	-	-	-	-	0.316

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.23 Project emissions of SO_X from Wuthrich Quarry (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	0.110	0.120	0.0807	-	-	-	-	0.00525
Blasting	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.000118	0.000127	0.0000909	-	-	-	-	0.0000246
Diesel Equipment	0.0104	0.0114	0.00767	-	-	-	-	0.000499
Diesel Generators	0.000311	0.000339	0.000228	-	-	-	-	0.0000149
Total	0.121	0.132	0.0887	-	-	-	-	0.00579

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.24 Project emissions of CO from Wuthrich Quarry (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	3.73	4.08	2.75	-	-	-	-	0.179
Blasting	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.142	0.153	0.102	-	-	-	-	0.0157
Diesel Equipment	2.97	3.33	2.20	-	-	-	-	0.131
Diesel Generators	0.0634	0.0707	0.0469	-	-	-	-	0.00289
Total	6.91	7.63	5.10	-	-	-	-	0.329

NOTE:

Table F.25 Project emissions of TSP from 85th Avenue Industrial Lands (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	-	-	6.44	8.57	18.5	16.4	17.4	-
Material Handling	-	-	0.0677	0.0902	0.194	0.173	0.184	-
Grading	-	-	1.14	1.52	3.27	2.91	3.09	-
Scraping	-	-	2.61	3.47	7.47	6.65	7.07	-
Unpaved Roads	-	-	74.1	98.6	212	189	201	-
Paved Roads	-	-	0.00415	0.00415	0.00415	0.00415	0.00415	-
Vehicles	-	-	0.000969	0.00121	0.00232	0.0145	0.0150	-
Diesel Equipment	-	-	0.266	0.381	0.884	0.787	0.873	-
Total	-	-	84.6	113	242	216	230	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.26 Project emissions of PM₁₀ from 85th Avenue Industrial Lands (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	-	-	1.68	2.23	4.81	4.28	4.55	-
Material Handling	-	-	0.0320	0.0427	0.0919	0.0817	0.0869	-
Grading	-	-	0.334	0.445	0.957	0.852	0.905	-
Scraping	-	-	1.23	1.64	3.54	3.15	3.34	-
Unpaved Roads	-	-	21.1	28	60.4	53.7	57.1	-
Paved Roads	-	-	0.000797	0.000797	0.000797	0.000797	0.000797	-
Vehicles	-	-	0.000969	0.00121	0.00232	0.0145	0.015	-
Diesel Equipment	-	-	0.266	0.381	0.884	0.787	0.873	-
Total	-	-	24.6	32.7	70.7	62.9	66.9	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.27 Project emissions of $PM_{2.5}$ from 85th Avenue Industrial Lands (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	-	-	0.676	0.900	1.94	1.72	1.83	-
Material Handling	-	-	0.00485	0.00646	0.0139	0.0124	0.0132	-
Grading	-	-	0.0354	0.0471	0.101	0.0902	0.0959	-
Scraping	-	-	0.187	0.249	0.535	0.476	0.506	-
Unpaved Roads	-	-	2.11	2.80	6.04	5.37	5.71	-
Paved Roads	-	-	0.000193	0.000193	0.000193	0.000193	0.000193	-
Vehicles	-	-	0.000704	0.000871	0.00165	0.0116	0.0119	-
Diesel Equipment	-	-	0.258	0.370	0.858	0.763	0.847	-
Total	-	-	3.27	4.37	9.49	8.44	9.01	-

NOTE:

Table F.28 Project emissions of NO_X from 85th Avenue Industrial Lands (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	2014	2013	2010	2017	2010	2019	2020	2021
Material Handling	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	-	-	0.00640	0.00740	0.0138	0.190	0.186	-
Diesel Equipment	-	-	2.72	3.62	7.82	6.95	7.40	-
Total	-	-	2.73	3.63	7.83	7.14	7.59	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.29 Project emissions of SO_x from 85th Avenue Industrial Lands (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	-	-	0.0000571	0.0000722	0.000144	0.000465	0.000490	-
Diesel Equipment	-	-	0.00514	0.00684	0.0147	0.0131	0.0139	-
Total	-	-	0.00520	0.00691	0.0148	0.0136	0.0144	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.30 Project emissions of CO from 85th Avenue Industrial Lands (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	-	-	0.0413	0.0489	0.0935	0.126	0.122	-
Diesel Equipment	-	-	1.40	1.92	4.24	3.77	4.08	-
Total	-	-	1.44	1.97	4.33	3.90	4.20	-

NOTE:

Table F.31 Project emissions of TSP from West Pine Quarry (in tonnes/year)

Emission Course	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	1.54	1.34	1.70	10.3	2.52	2.24	13.6	-
Drilling	1.16	1.01	1.28	7.78	1.90	1.69	10.2	-
Explosives	-	-	-	-	-	-	-	-
Blasting	0.770	0.770	0.770	1.54	0.770	0.770	1.54	-
Material Processing	0.289	0.251	0.32	1.94	0.473	0.421	2.55	-
Grading	0.0249	0.0216	0.0275	0.167	0.0407	0.0363	0.220	-
Scraping	0.365	0.318	0.404	2.45	0.598	0.533	3.22	-
Unpaved Roads	20.8	18.1	23.0	139	34.0	30.3	182	-
Paved Roads	0.00975	0.0108	0.0108	0.0108	0.0108	0.0108	0.0108	-
Vehicles	0.000711	0.000670	0.000675	0.00214	0.000777	0.00071	0.00223	-
Diesel Equipment	0.138	0.121	0.160	1.22	0.265	0.236	1.65	-
Diesel Generators	0.00434	0.00379	0.00494	0.0411	0.00779	0.00694	0.0541	-
Total	25.1	21.9	27.7	164	40.6	36.2	215	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.32 Project emissions of PM₁₀ from West Pine Quarry (in tonnes/year)

F	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	0.259	0.226	0.287	1.74	0.424	0.378	2.29	-
Drilling	0.548	0.477	0.607	3.68	0.898	0.800	4.84	-
Explosives	-	-	-	-	-	-	-	-
Blasting	0.400	0.400	0.400	0.801	0.400	0.400	0.801	-
Material Processing	0.106	0.0922	0.117	0.710	0.173	0.154	0.935	-
Grading	0.00728	0.00633	0.00806	0.0488	0.0119	0.0106	0.0643	-
Scraping	0.173	0.15	0.191	1.16	0.283	0.252	1.52	-
Unpaved Roads	5.91	5.15	6.54	39.4	9.66	8.61	51.9	-
Paved Roads	0.00187	0.00208	0.00208	0.00208	0.00208	0.00208	0.00208	-
Vehicles	0.000711	0.000670	0.000675	0.00214	0.000777	0.000710	0.00223	-
Diesel Equipment	0.138	0.121	0.160	1.22	0.265	0.236	1.65	-
Diesel Generators	0.00434	0.00379	0.00494	0.0411	0.00779	0.00694	0.0541	-
Total	7.55	6.63	8.32	48.8	12.1	10.9	64.1	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.33 Project emissions of PM_{2.5} from West Pine Quarry (in tonnes/year)

Emission Courses	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	0.162	0.141	0.179	1.08	0.265	0.236	1.43	-
Drilling	0.0830	0.0723	0.0919	0.557	0.136	0.121	0.733	-
Explosives	-	-	-	-	-	-	-	-
Blasting	0.0231	0.0231	0.0231	0.0462	0.0231	0.0231	0.0462	-
Material Processing	0.0159	0.0138	0.0176	0.107	0.0260	0.0232	0.140	-
Grading	0.000771	0.000671	0.000853	0.00517	0.00126	0.00112	0.00681	-
Scraping	0.0262	0.0228	0.0289	0.175	0.0428	0.0381	0.231	-
Unpaved Roads	0.591	0.515	0.654	3.94	0.966	0.861	5.19	-
Paved Roads	0.000453	0.000503	0.000503	0.000503	0.000503	0.000503	0.000503	-
Vehicles	0.000491	0.000464	0.000449	0.00131	0.00050	0.000456	0.00123	-
Diesel Equipment	0.134	0.117	0.156	1.19	0.257	0.229	1.60	-
Diesel Generators	0.00421	0.00368	0.00479	0.0399	0.00756	0.00673	0.0525	-
Total	1.04	0.910	1.16	7.14	1.73	1.54	9.43	-

NOTE:

Table F.34 Project emissions of NO_X from West Pine Quarry (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	0.330	0.287	0.365	2.21	0.541	0.481	2.91	-
Blasting	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.00771	0.00704	0.00755	0.0323	0.00892	0.00775	0.0357	-
Diesel Equipment	1.50	1.31	1.67	10.2	2.47	2.20	13.4	-
Diesel Generators	0.0491	0.0428	0.0545	0.337	0.0809	0.0720	0.443	-
Total	1.89	1.65	2.10	12.8	3.10	2.76	16.8	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.35 Project emissions of SO_X from West Pine Quarry (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	0.0413	0.0359	0.0457	0.277	0.0676	0.0602	0.364	-
Blasting	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.0000457	0.0000427	0.0000472	0.000172	0.0000575	0.0000527	0.000209	-
Diesel Equipment	0.00285	0.00248	0.00315	0.0191	0.00466	0.00415	0.0251	-
Diesel Generators	0.0000912	0.0000793	0.00010	0.000612	0.000149	0.000133	0.000805	-
Total	0.0443	0.0385	0.0490	0.297	0.0725	0.0645	0.390	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.36 Project emissions of CO from West Pine Quarry (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	1.40	1.22	1.55	9.41	2.30	2.05	12.4	-
Blasting	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.0503	0.0461	0.0497	0.216	0.0607	0.0532	0.265	-
Diesel Equipment	0.755	0.658	0.849	5.61	1.31	1.16	7.47	-
Diesel Generators	0.0182	0.0158	0.0203	0.142	0.0309	0.0276	0.187	-
Total	2.22	1.94	2.47	15.4	3.70	3.29	20.3	-

NOTE:

Table F.37 Project emissions of TSP from Portage (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	22.8	22.8	-	-	-	-	-
Drilling	-	20.5	20.5	-	-	-	-	-
Explosives	-	-	-	-	-	-	-	-
Blasting	-	3.08	3.08	-	-	-	-	-
Material Processing	-	4.27	4.27	-	-	-	-	-
Grading	-	0.368	0.368	-	-	-	-	-
Scraping	-	5.40	5.40	-	-	-	-	-
Unpaved Roads	-	0.0561	0.0561	-	-	-	-	-
Paved Roads	-	44.2	44.2	-	-	-	-	-
Vehicles	-	0.00114	0.000705	-	-	-	-	-
Diesel Equipment	-	1.54	1.60	-	-	-	-	-
Diesel Generators	-	0.0907	0.0907	-	-	-	-	-
Total	-	102	102	-	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.38 Project emissions of PM_{10} from Portage (in tonnes/year)

Eminaian Course	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	-	3.83	3.83	-	-	-	-	-
Drilling	-	9.68	9.68	-	-	-	-	-
Explosives	-	-	-	-	-	-	-	-
Blasting	-	1.60	1.60	-	-	-	-	-
Material Processing	-	1.57	1.57	-	-	-	-	-
Grading	-	0.108	0.108	-	-	-	-	-
Scraping	-	2.56	2.56	-	-	-	-	-
Unpaved Roads	-	0.0160	0.0160	-	-	-	-	-
Paved Roads	-	8.49	8.49	-	-	-	-	-
Vehicles	-	0.00114	0.000705	-	-	-	-	-
Diesel Equipment	-	1.54	1.60	-	-	-	-	-
Diesel Generators	-	0.0907	0.0907	-	-	-	-	-
Total	-	29.5	29.5	-	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.39 Project emissions of PM_{2.5} from Portage (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	2.39	2.39	-	-	-	-	-
Drilling	-	1.47	1.47	-	-	-	-	-
Explosives	-	-	-	-	-	-	-	-
Blasting	-	0.0924	0.0924	-	-	-	-	-
Material Processing	-	0.235	0.235	-	-	-	-	-
Grading	-	0.0114	0.0114	-	-	-	-	-
Scraping	-	0.387	0.387	-	-	-	-	-
Unpaved Roads	-	0.00160	0.00160	-	-	-	-	-
Paved Roads	-	2.05	2.05	-	-	-	-	-
Vehicles	-	0.000957	0.000565	-	-	-	-	-
Diesel Equipment	-	1.49	1.55	-	-	-	-	-
Diesel Generators	-	0.0880	0.0880	-	-	-	-	-
Total	-	8.22	8.28	-	-	-	-	-

NOTE:

Table F.40 Project emissions of NO_X from Portage (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	-	4.88	4.88	-	-	-	-	-
Blasting	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	-	0.0226	0.0111	-	-	-	-	-
Diesel Equipment	-	13.3	13.3	-	-	-	-	-
Diesel Generators	-	0.743	0.743	-	-	-	-	-
Total	-	18.9	18.9	-	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.41 Project emissions of SO_X from Portage (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	-	0.610	0.610	-	-	-	-	-
Blasting	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	-	0.0000619	0.0000395	-	-	-	-	-
Diesel Equipment	-	0.0250	0.0250	-	-	-	-	-
Diesel Generators	-	0.00135	0.00135	-	-	-	-	-
Total	-	0.636	0.636	-	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.42 Project emissions of CO from Portage (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Drilling	-	-	-	-	-	-	-	-
Explosives	-	20.8	20.8	-	-	-	-	-
Blasting	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	-	0.163	0.0793	-	-	-	-	-
Diesel Equipment	-	7.17	7.29	-	-	-	-	-
Diesel Generators	-	0.313	0.313	-	-	-	-	-
Total	-	28.4	28.5	-	-	-	-	-

NOTE:

Table F.43 Project emissions of TSP from Del Rio (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Material Handling	1.67	-	-	-	-	-	-	-
Grading	2.61	-	-	-	-	-	-	-
Diesel Equipment	0.151	-	-	-	-	-	-	-
Total	4.43	-	-	-	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.44 Project emissions of PM₁₀ from Del Rio (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Material Handling	0.790	-	-	-	-	-	-	-
Grading	0.763	-	-	-	-	-	-	-
Diesel Equipment	0.151	-	-	-	-	-	-	-
Total	1.70	-	-	-	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.45 Project emissions of PM_{2.5} from Del Rio (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Material Handling	0.120	-	-	-	-	-	-	-
Grading	0.0808	-	-	-	-	-	-	-
Diesel Equipment	0.146	-	-	-	-	-	-	-
Total	0.347	-	-	-	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.46 Project emissions of NO_X from Del Rio (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Material Handling	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Diesel Equipment	1.43	-	-	-	-	-	-	-
Total	1.43	-	-	-	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.47 Project emissions of SO_x from Del Rio (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Material Handling	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Diesel Equipment	0.00270	-	-	-	-	-	-	-
Total	0.00270	-	-	-	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.48 Project emissions of CO from Del Rio (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Material Handling	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Diesel Equipment	0.763	-	-	-	-	-	-	-
Total	0.763	-	-	-	-	-	-	-

NOTE:

Table F.49 Project emissions of TSP from Area E (in tonnes/year)

Emission Course	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	-	-	-	-	-	-	2.74	-
Scraping	-	-	-	-	-	-	11.1	-
Material Handling	-	-	-	-	-	-	1.65	-
Grading	-	-	-	-	-	-	8.97	-
Unpaved Roads	-	-	-	-	-	-	307	-
Paved Roads	-	-	-	-	-	-	2.76	-
Vehicles	-	-	-	-	-	-	0.125	-
Diesel Equipment	-	-	-	-	-	-	0.445	-
Total	-	-	-	-	-	-	335	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.50 Project emissions of PM₁₀ from Area E (in tonnes/year)

Emission Course	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	-	-	-	-	-	-	0.451	-
Scraping	-	-	-	-	-	-	5.27	-
Material Handling	-	-	-	-	-	-	0.779	-
Grading	-	-	-	-	-	-	2.62	-
Unpaved Roads	-	-	-	-	-	-	87.5	-
Paved Roads	-	-	-	-	-	-	0.530	-
Vehicles	-	-	-	-	-	-	0.125	-
Diesel Equipment	-	-	-	-	-	-	0.445	-
Total	-	-	-	-	-	-	97.7	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.51 Project emissions of $PM_{2.5}$ from Area E (in tonnes/year)

Emission Course	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	-	-	-	-	-	-	0.288	-
Scraping	-	-	-	-	-	-	0.798	-
Material Handling	-	-	-	-	-	-	0.118	-
Grading	-	-	-	-	-	-	0.278	-
Unpaved Roads	-	-	-	-	-	-	8.75	-
Paved Roads	-	-	-	-	-	-	0.128	-
Vehicles	-	-	-	-	-	-	0.102	-
Diesel Equipment	-	-	-	-	-	-	0.432	-
Total	-	-	-	-	-	-	10.9	-

NOTE:

Table F.52 Project emissions of NO_X from Area E (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Bulldozing	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	-	-	-	-	-	-	1.70	-
Diesel Equipment	-	-	-	-	-	-	4.74	-
Total	-	-	-	-	-	-	6.44	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.53 Project emissions of SO_X from Area E (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	-	-	-	-	-	-	0.00362	-
Diesel Equipment	-	-	-	-	-	-	0.00849	-
Total	-	-	-	-	-	-	0.0121	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.54 Project emissions of CO from Area E (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Bulldozing	-	-	-	-	-	-	-	-
Scraping	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	-	-	-	-	-	-	0.531	-
Diesel Equipment	-	-	-	-	-	-	2.48	-
Total	-	-	-	-	-	-	3.01	-

NOTE:

Table F.55 Project emissions of TSP from Hudson's Hope Berm (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Diesel Equipment	-	-	-	1.59	1.60	-	-	-
Grading	-	-	-	3.22	3.22	-	-	-
Material Handling	-	-	-	0.00802	-	-	-	-
Total	-	-	-	4.82	4.82	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.56 Project emissions of PM₁₀ from Hudson's Hope Berm (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Diesel Equipment	-	-	-	1.59	1.60	-	-	-
Grading	-	-	-	0.944	0.944	-	-	-
Material Handling	-	-	-	0.00379	-	-	-	-
Total	-	-	-	2.54	2.54	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.57 Project emissions of PM_{2.5} from Hudson's Hope Berm (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Diesel Equipment	-	-	-	1.54	1.55	-	-	-
Grading	-	-	-	0.100	0.100	-	-	-
Material Handling	-	-	-	0.000574	-	-	-	-
Total	-	-	-	1.64	1.65	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.58 Project emissions of NO_X from Hudson's Hope Berm (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Diesel Equipment	-	-	-	23.0	23.0	-	-	-
Grading	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Total	-	-	-	23.0	23.0	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.59 Project emissions of SO_x from Hudson's Hope Berm (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Diesel Equipment	-	-	-	0.0314	0.0314	-	-	-
Grading	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Total	-	-	-	0.0314	0.0314	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.60 Project emissions of CO from Hudson's Hope Berm (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Diesel Equipment	-	-	-	8.23	8.25	-	-	-
Grading	-	-	-	-	-	-	-	-
Material Handling	-	-	-	-	-	-	-	-
Total	-	-	-	8.23	8.25	-	-	-

NOTE:

Table F.61 Project emissions of TSP from Road Infrastructure (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Material Handling	6.33	3.78	18.1	15.9	6.24	-	-	-
Material Processing	-	0.113	0.264	0.489	0.489	-	-	-
Crushing	0.0818	0.0650	0.173	0.152	0.0601	-	-	-
Stockpile Wind Erosion	13.2	4.02	5.81	0.472	0.472	-	-	-
Grading	15.1	4.27	-	18.6	11.4	-	-	-
Paved Roads	694	856	163	535	375	-	-	-
Vehicles	0.196	0.240	0.0422	0.118	0.0799	-	-	-
Diesel Equipment	8.50	1.20	0.00374	8.08	6.35	-	-	-
Asphalt Plant	-	133	311	577	577	-	-	-
Total	737	1,003	498	1,156	977	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.62 Project emissions of PM₁₀ from Road Infrastructure (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Material Handling	2.99	1.79	8.56	7.51	2.95	-	-	-
Material Processing	-	0.0392	0.0915	0.170	0.170	-	-	-
Crushing	0.0364	0.0289	0.0770	0.0674	0.0267	-	-	-
Stockpile Wind Erosion	6.59	2.01	2.91	0.236	0.236	-	-	-
Grading	4.41	1.25	-	5.43	3.34	-	-	-
Paved Roads	133	164	31.2	103	72	-	-	-
Vehicles	0.196	0.240	0.0422	0.118	0.0799	-	-	-
Diesel Equipment	8.50	1.20	0.00374	8.08	6.35	-	-	-
Asphalt Plant	-	93.0	217	402	402	-	-	-
Total	156	264	260	527	487	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.63 Project emissions of PM_{2.5} from Road Infrastructure (in tonnes/year)

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Material Handling	0.453	0.271	1.30	1.14	0.447	-	-	-
Material Processing	-	0.00588	0.0137	0.0254	0.0254	-	-	-
Crushing	0.00545	0.00433	0.0115	0.010	0.0040	-	-	-
Stockpile Wind Erosion	0.988	0.301	0.436	0.0354	0.0354	-	-	-
Grading	0.467	0.132	-	0.576	0.354	-	-	-
Paved Roads	32.2	39.7	7.55	24.9	17.4	-	-	-
Vehicles	0.158	0.193	0.0331	0.0905	0.0615	-	-	-
Diesel Equipment	8.24	1.16	0.00363	7.83	6.16	-	-	-
Asphalt Plant	-	65.1	152	281	281	-	-	-
Total	42.5	107	161	316	305	-	-	-

NOTE:

Table F.64 Project emissions of NO_x from Road Infrastructure (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Material Handling	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Crushing	-	-	-	-	-	-	-	-
Stockpile Wind Erosion	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	5.20	6.38	1.17	3.62	2.43	-	-	-
Diesel Equipment	121	11.4	0.0436	118	93.2	-	-	-
Asphalt Plant	-	222	519	961	961	-	-	-
Total	126	240	520	1,083	1,057	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.65 Project emissions of SO_X from Road Infrastructure (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Material Handling	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Crushing	-	-	-	-	-	-	-	-
Stockpile Wind Erosion	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.0166	0.0203	0.00422	0.0129	0.00868	-	-	-
Diesel Equipment	0.157	0.0216	0.0000825	0.163	0.126	-	-	-
Asphalt Plant	-	235	547	1014	1014	-	-	-
Total	0.174	235	547	1,014	1,014	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.66 Project emissions of CO from Road Infrastructure (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Material Handling	-	-	-	-	-	-	-	-
Material Processing	-	-	-	-	-	-	-	-
Crushing	-	-	-	-	-	-	-	-
Stockpile Wind Erosion	-	-	-	-	-	-	-	-
Grading	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	21.4	26.2	5.09	16.2	10.9	-	-	-
Diesel Equipment	41.2	5.77	0.0217	42.5	33.0	-	-	-
Asphalt Plant	-	526	1227	2272	2272	-	-	-
Total	62.6	558	1,232	2,331	2,316	-	-	-

NOTE:

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Grading	-	0.374	0.612	0.238	-	-	-	-
Paved Roads	0.929	4.29	20.9	26.6	-	-	-	-
Vehicles	0.000422	0.0309	0.107	0.0787	-	-	-	-
Diesel Equipment	-	0.0627	0.180	0.117	-	-	-	-
Aircraft	0.000221	0.000221	0.00470	0.00470	-	-	-	-
Total	0.930	4.76	21.8	27.0	-	-	-	-

Table F.67 Project emissions of TSP from Transmission Line Right-of-Way (in tonnes/year)

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.68 Project emissions of PM₁₀ from Transmission Line Right-of-Way (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Grading	-	0.110	0.179	0.0697	-	-	-	-
Paved Roads	0.178	0.823	4.01	5.10	-	-	-	-
Vehicles	0.000422	0.0309	0.107	0.0787	-	-	-	-
Diesel Equipment	-	0.0627	0.180	0.117	-	-	-	-
Aircraft	0.000216	0.000216	0.00459	0.00459	-	-	-	-
Total	0.179	1.03	4.48	5.37	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.69 Project emissions of PM_{2.5} from Transmission Line Right-of-Way (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Grading	-	0.0116	0.0190	0.00738	-	-	-	-
Paved Roads	0.0431	0.199	0.971	1.23	-	-	-	-
Vehicles	0.000279	0.0221	0.0749	0.0545	-	-	-	-
Diesel Equipment	-	0.0609	0.175	0.113	-	-	-	-
Aircraft	0.000214	0.000214	0.00455	0.00455	-	-	-	-
Total	0.0436	0.294	1.24	1.41	-	-	-	-

NOTE:

Table F.70 Project emissions of NO_X from Transmission Line Right-of-Way (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Grading	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.00868	0.269	0.953	0.664	-	-	-	-
Diesel Equipment	-	0.582	1.73	1.13	-	-	-	-
Aircraft	0.000200	0.000200	0.00423	0.00423	-	-	-	-
Total	0.00888	0.851	2.69	1.80	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.71 Project emissions of SO_x from Transmission Line Right-of-Way (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Grading	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.0000355	0.00199	0.00743	0.00552	-	-	-	-
Diesel Equipment	-	0.00110	0.00327	0.00215	-	-	-	-
Aircraft	0.000619	0.000619	0.0132	0.0132	-	-	-	-
Total	0.000655	0.00371	0.0239	0.0209	-	-	-	-

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.72 Project emissions of CO from Transmission Line Right-of-Way (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Grading	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.0569	1.64	5.66	4.10	-	-	-	-
Diesel Equipment	-	0.320	0.904	0.578	-	-	-	-
Aircraft	0.00680	0.0068	0.144	0.144	-	-	-	-
Total	0.0637	1.97	6.71	4.82	-	-	-	-

NOTE:

Table F.73 Project emissions of TSP from Clearing (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
	2014	2015	2016	2017	2018	2019	2020	2021
Grading	11.2	9.71	3.28	-	-	-	-	-
Unpaved Roads	385	335	113	-	-	-	-	-
Paved Roads	25.3	22.0	7.44	-	-	-	-	-
Vehicles	0.101	0.0877	0.0287	-	-	-	-	-
Diesel Equipment	2.92	2.52	0.787	-	-	-	-	-
Marine Vessels	0.0294	0.0294	0.0535	0.0535	0.0535	0.0535	0.0535	0.0535
Aircraft	1.32	1.10	0.921	-	-	-	-	-
Burning and Incineration	1,881	1,564	508	-	-	-	-	-
Clearing Activities	425	370	126	0.0535	0.0535	0.0535	0.0535	0.0535
Total	2,307	1,934	634	0.0535	0.0535	0.0535	0.0535	0.0535

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.74 Project emissions of PM₁₀ from Clearing (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Grading	3.27	2.84	0.960	-	-	-	-	-
Unpaved Roads	109	95.2	32.1	-	-	-	-	-
Paved Roads	4.86	4.23	1.43	-	-	-	-	-
Vehicles	0.101	0.0877	0.0287	-	-	-	-	-
Diesel Equipment	2.92	2.52	0.787	-	-	-	-	-
Marine Vessels	0.0291	0.0291	0.0529	0.0529	0.0529	0.0529	0.0529	0.0529
Aircraft	1.28	1.07	0.899	-	-	-	-	-
Burning and Incineration	1,231	1,025	333	-	-	-	-	-
Clearing Activities	122	106	36.3	0.0529	0.0529	0.0529	0.0529	0.0529
Total	1,352	1,131	369	0.0529	0.0529	0.0529	0.0529	0.0529

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.75 Project emissions of PM_{2.5} from Clearing (in tonnes/year)

Emission Source	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Emission Source	2014	2015	2016	2017	2018	2019	2020	2021
Grading	0.346	0.301	0.102	-	-	-	-	-
Unpaved Roads	10.9	9.52	3.21	-	-	-	-	-
Paved Roads	1.18	1.02	0.345	-	-	-	-	-
Vehicles	0.0717	0.0624	0.0202	-	-	-	-	-
Diesel Equipment	2.84	2.45	0.763	-	-	-	-	-
Marine Vessels	0.0257	0.0257	0.047	0.0470	0.0470	0.0470	0.0470	0.0470
Aircraft	1.27	1.06	0.890	-	-	-	-	-
Burning and Incineration	1,202	1,001	325	-	-	-	-	-
Clearing Activities	16.7	14.4	5.38	0.0470	0.0470	0.0470	0.0470	0.0470
Total	1,219	1,015	330	0.0470	0.0470	0.0470	0.0470	0.0470

NOTE:

Table F.76 Project emissions of NO_x from Clearing (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Grading	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	1.57	1.37	0.447	-	-	-	-	-
Diesel Equipment	24.5	21.2	7.18	-	-	-	-	-
Marine Vessels	1.90	1.90	2.78	2.78	2.78	2.78	2.78	2.78
Aircraft	3.00	2.50	2.10	-	-	-	-	-
Burning and Incineration	596	496	161	-	-	-	-	-
Clearing Activities	30.9	27.0	12.5	2.78	2.78	2.78	2.78	2.78
Total	627	523	174	2.78	2.78	2.78	2.78	2.78

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.77 Project emissions of SO_x from Clearing (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Grading	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	0.00789	0.00686	0.00230	-	-	-	-	-
Diesel Equipment	0.0391	0.0339	0.0114	-	-	-	-	-
Marine Vessels	0.000704	0.000704	0.001030	0.00103	0.00103	0.00103	0.00103	0.00103
Aircraft	3.68	3.07	2.58	-	-	-	-	-
Burning and Incineration	13.80	11.40	3.69	-	-	-	-	-
Clearing Activities	3.73	3.11	2.59	0.00103	0.00103	0.00103	0.00103	0.00103
Total	17.53	14.51	6.28	0.00103	0.00103	0.00103	0.00103	0.00103

NOTE:

All numbers less than 100 are rounded to three significant figures.

Table F.78 Project emissions of CO from Clearing (in tonnes/year)

Emission Source	Year 1 2014	Year 2 2015	Year 3 2016	Year 4 2017	Year 5 2018	Year 6 2019	Year 7 2020	Year 8 2021
Grading	-	-	-	-	-	-	-	-
Unpaved Roads	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-
Vehicles	10.3	8.93	2.89	-	-	-	-	-
Diesel Equipment	10.5	9.14	3.01	-	-	-	-	-
Marine Vessels	0.123	0.123	0.180	0.180	0.180	0.180	0.180	0.180
Aircraft	0.388	0.324	0.272	-	-	-	-	-
Burning and Incineration	14,772	12,213	3,956	-	-	-	-	-
Clearing Activities	21.3	18.5	6.34	0.180	0.180	0.180	0.180	0.180
Total	14,793	12,232	3,962	0.180	0.180	0.180	0.180	0.180

NOTE:

Site C Clean Energy Project

Volume 2 Appendix L Air Quality Technical Data Report

APPENDIX G

Dispersion Modelling Results

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Residence 1	630.981	6232.372	5.6	1.0	9.1	25	3.5	0.09
Residence 2	630.756	6232.335	5.5	1.0	9.6	26	3.3	0.08
Residence 3	630.717	6232.314	5.4	1.1	9.7	26	3.4	0.09
Residence 4	630.581	6232.296	5.2	1.0	9.3	25	3.2	0.08
Residence 5	630.552	6232.296	5.2	1.0	9.1	25	3.2	0.08
Residence 6	630.247	6232.403	4.4	0.7	5.8	16	2.2	0.06
Residence 7	634.997	6230.486	2.4	0.7	3.3	10	2.6	0.06
Residence 8	634.862	6230.523	2.5	0.7	3.4	11	2.6	0.06
Residence 9	635.041	6230.506	2.4	0.7	3.3	10	2.5	0.06
Residence 10	635.124	6230.508	2.4	0.7	3.1	9.4	2.5	0.06
Residence 11	634.535	6230.703	2.5	0.8	3.4	11	2.7	0.07
Residence 12	634.579	6230.785	2.5	0.7	3.3	10	2.6	0.06
Residence 13	634.743	6230.833	2.3	0.7	3.1	9.7	2.5	0.06
Residence 14	634.840	6230.765	2.3	0.7	3.2	9.8	2.5	0.06
Residence 15	634.898	6230.703	2.4	0.7	3.2	9.9	2.5	0.06
Residence 16	634.982	6230.627	2.4	0.7	3.2	9.9	2.5	0.06
Residence 17	635.045	6230.755	2.3	0.7	3.0	9.3	2.4	0.06
Residence 18	635.042	6230.725	2.3	0.7	3.1	9.4	2.4	0.06
Residence 19	635.072	6230.654	2.4	0.7	3.1	9.5	2.5	0.06
Residence 20	635.123	6230.659	2.3	0.7	3.1	9.3	2.4	0.06
Residence 21	635.138	6230.587	2.3	0.7	3.1	9.5	2.5	0.06
Residence 22	630.252	6232.596	3.6	0.6	4.7	13	1.8	0.05
Residence 23	633.547	6231.980	4.0	1.0	6.0	19	3.8	0.1
Residence 24	633.549	6232.516	3.7	0.8	6.6	20	3.4	0.09
Residence 25	633.590	6232.546	3.7	0.8	6.5	20	3.4	0.09
Residence 26	633.545	6231.881	4.0	1.0	5.9	18	3.9	0.1
Residence 27	633.547	6231.893	4.0	1.0	5.9	18	3.9	0.1
Residence 28	634.090	6232.671	3.3	0.8	5.6	17	3.0	0.08
Residence 29	634.047	6232.473	3.6	0.8	5.5	16	3.2	0.08
Residence 30	634.132	6232.501	3.5	0.8	5.3	16	3.1	0.08
Residence 31	633.822	6232.438	3.6	0.8	6.0	18	3.3	0.09
Residence 32	633.703	6232.241	3.8	0.9	6.1	19	3.6	0.09
Residence 33	633.970	6232.454	3.5	0.8	5.7	17	3.2	0.08
Residence 34	632.469	6230.313	5.7	1.7	9.2	28	7.2	0.2
Residence 35	632.227	6231.391	6.9	1.9	11	36	8.2	0.2
Residence 36	630.438	6232.091	6.5	1.1	12	31	4.1	0.1
Residence 37	631.858	6231.027	8.7	2.3	12	40	9.9	0.2
Residence 38	631.693	6231.612	9.1	2.3	25	83	12	0.4
Residence 39	633.385	6231.479	4.2	1.1	5.5	17	4.4	0.1
Residence 40	634.217	6230.914	2.8	0.8	3.4	10	3.0	0.07
Residence 41	635.205	6230.478	2.3	0.7	3.0	8.9	2.5	0.06
Residence 42	634.888	6230.495	2.5	0.7	3.5	11	2.6	0.06
Residence 43	631.729	6232.627	5.6	0.9	8.2	24	3.5	0.1
Residence 44	631.892	6232.432	6.6	1.1	9.3	27	4.4	0.1
Residence 45	632.827	6232.458	4.7	1.0	7.2	21	4.1	0.1
Residence 46	633.108	6232.423	4.3	0.9	7.5	23	3.9	0.1
Residence 47	633.417	6232.513	3.9	0.8	6.8	21	3.5	0.09
Residence 48	630.233	6232.814	3.0	0.5	3.8	11	1.5	0.03
Residence 49	630.237	6232.750	3.2	0.5	4.0	12	1.5	0.04

Table G.1 Maximum predicted concentrations of particulate matter without background at ground-truthed residences (in µg/m³)

Receptor ID Residence 50 Residence 51 Residence 52 Residence 53 Residence 54 Residence 55 Residence 56 Residence 57 Residence 58 Residence 59 Residence 60 Residence 61 Residence 62 Residence 63	(km) 630.223 630.236 633.410 633.348 634.909 635.348 629.555 629.316 630.449 635.088 634.706	UTM Northing (km) 6232.954 6232.907 6233.370 6233.331 6233.462 6233.602 6233.713 6232.927 6232.906 6232.906 6232.964 6232.305	24-hour 2.7 2.8 2.7 3.5 2.1 2.1 1.8 2.7 2.7 2.7 2.6	Annual 0.5 0.5 0.7 0.7 0.5 0.5 0.5 0.4 0.4 0.4	24-hour 3.4 3.5 5.0 8.5 3.9 3.9 3.5 4.6	24-hour 10 10 15 25 12 11 10 12	Annual 1.3 1.4 3.0 3.4 2.0 1.9 1.7	Dustfall ^(a) 24-hour 0.04 0.09 0.05 0.05
Residence 51 Residence 52 Residence 53 Residence 54 Residence 55 Residence 56 Residence 57 Residence 58 Residence 59 Residence 60 Residence 61 Residence 62	630.223 630.236 633.410 633.348 634.909 634.900 635.348 629.555 629.316 630.449 635.088 634.706	6232.907 6233.370 6233.331 6233.462 6233.602 6233.713 6232.927 6232.906 6232.964 6232.305	2.8 2.7 3.5 2.1 2.1 1.8 2.7 2.7	0.5 0.7 0.7 0.5 0.5 0.4 0.4	3.5 5.0 8.5 3.9 3.9 3.5 4.6	10 15 25 12 11 10	1.4 3.0 3.4 2.0 1.9	0.04 0.09 0.09 0.05 0.05
Residence 52 Residence 53 Residence 54 Residence 55 Residence 56 Residence 57 Residence 58 Residence 59 Residence 60 Residence 61 Residence 62	633.410 633.348 634.909 634.900 635.348 629.555 629.316 629.323 630.449 635.088 634.706	6233.370 6233.331 6233.462 6233.602 6233.713 6232.927 6232.906 6232.964 6232.305	2.7 3.5 2.1 2.1 1.8 2.7 2.7	0.5 0.7 0.7 0.5 0.5 0.4 0.4	5.0 8.5 3.9 3.9 3.5 4.6	10 15 25 12 11 10	1.4 3.0 3.4 2.0 1.9	0.09 0.09 0.05 0.05
Residence 53 Residence 54 Residence 55 Residence 56 Residence 57 Residence 58 Residence 59 Residence 60 Residence 61 Residence 62	633.410 633.348 634.909 634.900 635.348 629.555 629.316 629.323 630.449 635.088 634.706	6233.370 6233.331 6233.462 6233.602 6233.713 6232.927 6232.906 6232.964 6232.305	2.7 3.5 2.1 2.1 1.8 2.7 2.7	0.7 0.7 0.5 0.5 0.4 0.4	5.0 8.5 3.9 3.9 3.5 4.6	15 25 12 11 10	3.0 3.4 2.0 1.9	0.09 0.09 0.05 0.05
Residence 53 Residence 54 Residence 55 Residence 56 Residence 57 Residence 58 Residence 59 Residence 60 Residence 61 Residence 62	634.909 634.900 635.348 629.555 629.316 629.323 630.449 635.088 634.706	6233.331 6233.462 6233.602 6233.713 6232.927 6232.906 6232.964 6232.305	2.1 2.1 1.8 2.7 2.7	0.5 0.5 0.4 0.4	3.9 3.9 3.5 4.6	12 11 10	3.4 2.0 1.9	0.09 0.05 0.05
Residence 55 Residence 56 Residence 57 Residence 58 Residence 59 Residence 60 Residence 61 Residence 62	634.900 635.348 629.555 629.316 629.323 630.449 635.088 634.706	6233.462 6233.602 6233.713 6232.927 6232.906 6232.964 6232.305	2.1 1.8 2.7 2.7	0.5 0.4 0.4	3.9 3.5 4.6	11 10	1.9	0.05 0.05
Residence 56 Residence 57 Residence 58 Residence 59 Residence 60 Residence 61 Residence 62	635.348 629.555 629.316 629.323 630.449 635.088 634.706	6233.602 6233.713 6232.927 6232.906 6232.964 6232.305	1.8 2.7 2.7	0.4 0.4	3.5 4.6	10	1.9	
Residence 57 Residence 58 Residence 59 Residence 60 Residence 61 Residence 62	635.348 629.555 629.316 629.323 630.449 635.088 634.706	6233.713 6232.927 6232.906 6232.964 6232.305	1.8 2.7 2.7	0.4 0.4	3.5 4.6	10		
Residence 58 Residence 59 Residence 60 Residence 61 Residence 62	629.555 629.316 629.323 630.449 635.088 634.706	6232.927 6232.906 6232.964 6232.305	2.7 2.7	0.4	4.6			
Residence 59 Residence 60 Residence 61 Residence 62	629.316 629.323 630.449 635.088 634.706	6232.964 6232.305	1	0.4	1.0	12	1.2	0.04
Residence 60 Residence 61 Residence 62	629.323 630.449 635.088 634.706	6232.964 6232.305	2.6		4.8	13	1.1	0.04
Residence 60 Residence 61 Residence 62	630.449 635.088 634.706	6232.305		0.4	4.6	12	1.1	0.04
Residence 62	634.706		5.0	1.0	8.3	23	3.0	0.07
		6230.518	2.4	0.7	3.2	9.7	2.5	0.06
Residence 63		6230.715	2.4	0.7	3.3	10	2.6	0.06
	634.632	6230.798	2.4	0.7	3.2	10	2.6	0.06
Residence 64	634.537	6230.925	2.5	0.7	3.2	9.9	2.7	0.07
Residence 65	634.738	6230.939	2.4	0.7	3.0	9.4	2.5	0.06
Residence 66	634.844	6230.924	2.3	0.7	3.0	9.3	2.5	0.06
Residence 67	634.799	6230.766	2.3	0.7	3.2	9.9	2.5	0.06
Residence 68	634.815	6230.761	2.3	0.7	3.2	9.9	2.5	0.06
Residence 69	634.889	6230.773	2.3	0.7	3.1	9.6	2.5	0.06
Residence 70	634.915	6230.769	2.3	0.7	3.1	9.6	2.5	0.06
Residence 71	634.844	6230.703	2.4	0.7	3.2	10	2.5	0.06
Residence 72	634.828	6230.713	2.4	0.7	3.2	10	2.5	0.06
Residence 73	634.951	6230.718	2.3	0.7	3.1	9.7	2.5	0.06
Residence 74	634.947	6230.768	2.3	0.7	3.1	9.5	2.5	0.06
Residence 75	635.008	6230.765	2.3	0.7	3.0	9.4	2.4	0.06
Residence 76	634.993	6230.715	2.3	0.7	3.1	9.6	2.5	0.06
Residence 77	635.076	6230.717	2.3	0.7	3.0	9.3	2.4	0.06
Residence 78	635.096	6230.718	2.3	0.7	3.0	9.2	2.4	0.06
Residence 79	635.089	6230.604	2.4	0.7	3.2	9.6	2.5	0.06
Residence 80	630.237	6232.630	3.5	0.6	4.5	13	1.7	0.05
Residence 81	628.453	6232.604	3.4	0.5	5.3	15	1.3	0.05
Residence 82	633.190	6230.482	3.7	1.1	5.1	15	4.4	0.1
Residence 83	633.355	6230.925	3.4	1.0	4.4	12	3.9	0.09
Residence 84	633.569	6230.686	3.2	1.0	4.0	13	3.6	0.09
Residence 85	635.202	6230.516	2.3	0.7	3.0	9.1	2.4	0.06
Residence 86	633.165	6232.660	3.9	0.8	6.1	18	3.4	0.09
Residence 87	630.279	6232.963	2.6	0.5	3.4	9.8	1.3	0.04

(a) 24-hour average based on worst-case 30-day period; units in mg/dm 2 -d.

Decenter ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Residence 1	630.981	6232.372	21	6.0	35	51	8.9	0.9
Residence 2	630.756	6232.335	20	6.0	36	52	8.7	0.9
Residence 3	630.717	6232.314	20	6.1	36	52	8.8	0.9
Residence 4	630.581	6232.296	20	6.0	35	51	8.6	0.9
Residence 5	630.552	6232.296	20	6.0	35	51	8.6	0.9
Residence 6	630.247	6232.403	19	5.7	32	42	7.6	0.9
Residence 7	634.997	6230.486	17	5.7	30	36	8.0	0.9
Residence 8	634.862	6230.523	18	5.7	30	37	8.0	0.9
Residence 9	635.041	6230.506	17	5.7	29	36	7.9	0.9
Residence 10	635.124	6230.508	17	5.7	29	36	7.9	0.9
Residence 11	634.535	6230.703	17	5.7	30	37	8.1	0.9
Residence 12	634.579	6230.785	17	5.7	29	37	8.0	0.9
Residence 13	634.743	6230.833	17	5.7	29	36	7.9	0.9
Residence 14	634.840	6230.765	17	5.7	29	36	7.9	0.9
Residence 15	634.898	6230.703	17	5.7	29	36	7.9	0.9
Residence 16	634.982	6230.627	17	5.7	29	36	7.9	0.9
Residence 17	635.045	6230.755	17	5.7	29	36	7.8	0.9
Residence 18	635.042	6230.725	17	5.7	29	36	7.8	0.9
Residence 19	635.072	6230.654	17	5.7	29	36	7.9	0.9
Residence 20	635.123	6230.659	17	5.7	29	36	7.8	0.9
Residence 21	635.138	6230.587	17	5.7	29	36	7.9	0.9
Residence 22	630.252	6232.596	19	5.6	31	39	7.2	0.9
Residence 23	633.547	6231.980	19	6.0	32	45	9.2	0.9
Residence 24	633.549	6232.516	19	5.8	33	46	8.8	0.9
Residence 25	633.590	6232.546	19	5.8	33	46	8.8	0.9
Residence 26	633.545	6231.881	19	6.0	32	45	9.3	0.9
Residence 27	633.547	6231.893	19	6.0	32	45	9.3	0.9
Residence 28	634.090	6232.671	18	5.8	32	43	8.4	0.9
Residence 29	634.047	6232.473	19	5.8	32	43	8.6	0.9
Residence 30	634.132	6232.501	19	5.8	31	42	8.5	0.9
Residence 31	633.822	6232.438	19	5.8	32	44	8.7	0.9
Residence 32	633.703	6232.241	19	5.9	32	45	9.0	0.9
Residence 33	633.970	6232.454	18	5.8	32	43	8.6	0.9
Residence 34	632.469	6230.313	21	6.7	35	54	13	1.0
Residence 35	632.227	6231.391	22	6.9	37	62	14	1.0
Residence 36	630.438	6232.091	21	6.1	38	58	9.5	0.9
Residence 37	631.858	6231.027	24	7.3	38	66	15	1.0
Residence 38	631.693	6231.612	24	7.3	50	109	17	1.2
Residence 39		6231.479	19	6.1	32	43	9.8	
	633.385					43 37		0.9
Residence 40	634.217	6230.914	18	5.8	30	-	8.4	0.9
Residence 41	635.205	6230.478	17	5.7	29	35	7.9	0.9
Residence 42	634.888	6230.495	18	5.7	30	37	8.0	0.9
Residence 43	631.729	6232.627	21	5.9	34	50	8.9	0.9
Residence 44	631.892	6232.432	22	6.1	35	54	10	0.9
Residence 45	632.827	6232.458	20	6.0	33	48	9.5	0.9
Residence 46	633.108	6232.423	19	5.9	34	49	9.3	0.9
Residence 47	633.417	6232.513	19	5.8	33	47	8.9	0.9
Residence 48	630.233	6232.814	18	5.5	30	37	6.9	0.8
Residence 49	630.237	6232.750	18	5.5	30	38	6.9	0.9
Residence 50	630.223	6232.954	18	5.5	30	36	6.7	0.8

Table G.2 Maximum predicted concentrations of particulate matter with background at ground-truthed residences (in μ g/m³)

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Residence 51	630.236	6232.907	18	5.5	30	37	6.8	0.8
Residence 52	633.410	6233.370	18	5.7	31	41	8.4	0.9
Residence 53	633.348	6233.331	18	5.7	35	51	8.8	0.9
Residence 54	634.909	6233.462	17	5.5	30	38	7.4	0.9
Residence 55	634.900	6233.602	17	5.5	30	38	7.3	0.9
Residence 56	635.348	6233.713	17	5.4	30	36	7.1	0.9
Residence 57	629.555	6232.927	18	5.4	31	38	6.6	0.8
Residence 58	629.316	6232.906	18	5.4	31	39	6.5	0.8
Residence 59	629.323	6232.964	18	5.4	31	38	6.5	0.8
Residence 60	630.449	6232.305	20	6.0	35	49	8.4	0.9
Residence 61	635.088	6230.518	17	5.7	29	36	7.9	0.9
Residence 62	634.706	6230.715	17	5.7	29	36	8.0	0.9
Residence 63	634.632	6230.798	17	5.7	29	36	8.0	0.9
Residence 64	634.537	6230.925	18	5.7	29	36	8.1	0.9
Residence 65	634.738	6230.939	17	5.7	29	36	7.9	0.9
Residence 66	634.844	6230.924	17	5.7	29	35	7.9	0.9
Residence 67	634.799	6230.766	17	5.7	29	36	7.9	0.9
Residence 68	634.815	6230.761	17	5.7	29	36	7.9	0.9
Residence 69	634.889	6230.773	17	5.7	29	36	7.9	0.9
Residence 70	634.915	6230.769	17	5.7	29	36	7.9	0.9
Residence 71	634.844	6230.703	17	5.7	29	36	7.9	0.9
Residence 72	634.828	6230.713	17	5.7	29	36	7.9	0.9
Residence 73	634.951	6230.718	17	5.7	29	36	7.9	0.9
Residence 74	634.947	6230.768	17	5.7	29	36	7.9	0.9
Residence 75	635.008	6230.765	17	5.7	29	36	7.8	0.9
Residence 76	634.993	6230.715	17	5.7	29	36	7.9	0.9
Residence 77	635.076	6230.717	17	5.7	29	36	7.8	0.9
Residence 78	635.096	6230.718	17	5.7	29	35	7.8	0.9
Residence 79	635.089	6230.604	17	5.7	29	36	7.9	0.9
Residence 80	630.237	6232.630	18	5.6	31	39	7.1	0.9
Residence 81	628.453	6232.604	18	5.5	32	41	6.7	0.9
Residence 82	633.190	6230.482	19	6.1	31	41	10	0.9
Residence 83	633.355	6230.925	18	6.0	31	39	9.3	0.9
Residence 84	633.569	6230.686	18	6.0	30	39	9.0	0.9
Residence 85	635.202	6230.516	17	5.7	29	35	7.8	0.9
Residence 86	633.165	6232.660	19	5.8	32	45	8.8	0.9
Residence 87	630.279	6232.963	18	5.5	30	36	6.7	0.8

(a) 24-hour average based on worst-case 30-day period; units in mg/dm²-d.

December ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 1	630.709	6228.334	21	5.7	41	89	30	0.6
Non-residence 2	630.724	6228.349	22	5.9	41	89	32	0.6
Non-residence 3	631.896	6230.979	8.6	2.3	17	57	9.9	0.0
Non-residence 4	630.996	6232.371	5.6	1.0	9.1	25	3.5	0.2
Non-residence 5	630.784	6232.310	5.5	1.1	9.1	23	3.6	0.09
Non-residence 6	630.699	6232.333	5.3	1.0	9.5	26	3.2	0.09
Non-residence 7	630.658	6232.333	5.4	1.2	9.5	26	3.5	0.08
Non-residence 8			5.4 5.2	1.2	9.7	25	3.2	
	630.599	6232.308	5.2 4.7	0.9	9.3		2.6	0.08
Non-residence 9	630.325	6232.338				19		0.07
Non-residence 10	630.351	6232.358	4.6	0.8	7.0	19	2.5	0.07
Non-residence 11	630.361	6232.357	4.6	0.8	7.1	19	2.5	0.07
Non-residence 12	630.319	6232.360	4.6	0.8	6.7	18	2.5	0.07
Non-residence 13	630.328	6232.360	4.6	0.8	6.8	18	2.5	0.07
Non-residence 14	630.302	6232.348	4.7	0.8	6.7	18	2.5	0.07
Non-residence 15	630.246	6232.343	4.7	0.8	6.3	17	2.4	0.07
Non-residence 16	630.255	6232.364	4.6	0.8	6.2	17	2.3	0.07
Non-residence 17	630.255	6232.349	4.6	0.8	6.3	17	2.4	0.07
Non-residence 18	630.896	6232.415	5.3	0.9	8.6	24	3.1	0.08
Non-residence 19	630.888	6232.417	5.3	0.9	8.6	24	3.1	0.08
Non-residence 20	630.895	6232.422	5.3	0.9	8.6	23	3.1	0.08
Non-residence 21	630.528	6232.328	4.9	1.0	8.8	24	2.9	0.07
Non-residence 22	630.527	6232.347	4.8	0.9	8.5	23	2.8	0.07
Non-residence 23	630.499	6232.316	5.0	1.0	8.8	23	3.0	0.07
Non-residence 24	630.473	6232.305	5.2	1.0	8.5	23	3.0	0.08
Non-residence 25	630.447	6232.321	4.9	1.0	8.3	22	2.9	0.07
Non-residence 26	630.301	6232.359	4.6	0.8	6.6	18	2.4	0.07
Non-residence 27	630.282	6232.385	4.5	0.8	6.2	17	2.3	0.06
Non-residence 28	630.933	6232.456	5.1	0.9	8.2	22	3.0	0.08
Non-residence 29	630.771	6232.361	5.3	1.0	9.2	25	3.2	0.08
Non-residence 30	635.021	6230.444	2.4	0.7	3.0	9	2.5	0.06
Non-residence 31	635.133	6230.463	2.4	0.7	3.0	8	2.5	0.06
Non-residence 32	634.933	6230.465	2.5	0.7	3.3	10	2.6	0.06
Non-residence 33	634.669	6230.722	2.4	0.7	3.3	10	2.6	0.06
Non-residence 34	634.373	6230.747	2.6	0.8	3.5	11	2.8	0.07
Non-residence 35	634.381	6230.741	2.6	0.8	3.5	11	2.8	0.07
Non-residence 36	634.454	6230.786	2.5	0.8	3.4	11	2.7	0.07
Non-residence 37	634.721	6230.824	2.4	0.7	3.1	10	2.5	0.06
Non-residence 38	634.904	6230.735	2.3	0.7	3.2	10	2.5	0.06
Non-residence 39	634.976	6230.724	2.3	0.7	3.1	10	2.5	0.06
Non-residence 40	634.975	6230.734	2.3	0.7	3.1	10	2.5	0.06
Non-residence 41	635.079	6230.582	2.4	0.7	3.2	10	2.5	0.06
Non-residence 42	634.982	6230.433	2.4	0.7	3.0	9	2.6	0.06
Non-residence 43	634.986	6230.433	2.4	0.7	3.0	9	2.6	0.06
Non-residence 44	634.990	6230.434	2.4	0.7	3.0	9	2.6	0.06
Non-residence 45	635.064	6230.733	2.4	0.7	3.0	9	2.0	0.06
Non-residence 46	635.559		2.3	0.7	2.7		2.4	0.06
		6230.553			4.3	8		
Non-residence 47	630.266	6232.703	3.3	0.6		12	1.6	0.05
Non-residence 48	630.244	6232.580	3.6	0.6	4.7	13	1.8	0.05
Non-residence 49	630.299	6232.482	4.0	0.7	5.6	16	2.1	0.06
Non-residence 50	633.556	6232.393	3.8	0.9	6.7	20	3.5	0.09

Table G.3 Maximum predicted concentrations of particulate matter without background at ground-truthed non-residences (in µg/m³)

December ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 51	633.672	6232.107	3.9	0.9	5.8	19	3.6	0.09
Non-residence 52	633.541	6231.953	4.1	1.0	6.0	19	3.9	0.10
Non-residence 53	633.535	6231.964	4.1	1.0	6.0	19	3.9	0.10
Non-residence 54	631.988	6226.324	4.9	0.7	6.3	17	1.8	0.06
Non-residence 55	633.707	6232.186	3.9	0.9	5.9	18	3.6	0.09
Non-residence 56	634.245	6232.454	3.4	0.8	4.9	15	3.1	0.08
Non-residence 57	634.231	6232.707	3.4	0.8	5.3	16	3.0	0.08
Non-residence 58	634.232	6232.711	3.4	0.7	5.3	16	3.0	0.08
Non-residence 59	633.703	6232.491	3.6	0.8	6.4	19	3.4	0.09
Non-residence 60	633.718	6232.487	3.6	0.8	6.3	19	3.4	0.09
Non-residence 61	634.013	6232.543	3.4	0.8	5.7	17	3.2	0.08
Non-residence 62	634.065	6232.496	3.5	0.8	5.5	16	3.2	0.08
Non-residence 63	636.582	6232.572	1.5	0.4	2.5	8	1.5	0.04
Non-residence 64	634.044	6232.415	3.6	0.8	5.4	16	3.2	0.08
Non-residence 65	636.569	6232.484	1.4	0.4	2.4	7	1.5	0.04
Non-residence 66	634.109	6232.491	3.5	0.8	5.3	16	3.1	0.08
Non-residence 67	636.664	6232.507	1.4	0.4	2.3	7	1.5	0.04
Non-residence 68	634.117	6232.506	3.5	0.8	5.3	16	3.1	0.08
Non-residence 69	634.130	6232.514	3.5	0.8	5.3	16	3.1	0.08
Non-residence 70	636.698	6232.511	1.4	0.4	2.3	7	1.5	0.04
Non-residence 71	636.681	6232.499	1.4	0.4	2.3	7	1.5	0.04
Non-residence 72	636.727	6232.539	1.4	0.4	2.3	7	1.5	0.04
Non-residence 73	636.788	6232.473	1.4	0.4	2.2	7	1.5	0.04
Non-residence 74	633.847	6232.489	3.5	0.8	6.0	18	3.3	0.08
Non-residence 75	633.760	6232.438	3.6	0.8	6.2	19	3.4	0.09
Non-residence 76	634.147	6232.482	3.5	0.8	5.2	16	3.1	0.08
Non-residence 77	633.694	6232.129	3.9	0.9	5.8	18	3.6	0.09
Non-residence 78	633.664	6232.127	3.9	0.9	5.9	19	3.7	0.09
Non-residence 79	633.683	6232.132	3.9	0.9	5.8	18	3.6	0.09
Non-residence 80	633.703	6232.133	3.9	0.9	5.8	18	3.6	0.09
Non-residence 81	633.712	6232.132	3.8	0.9	5.8	18	3.6	0.09
Non-residence 82	633.695	6232.140	3.9	0.9	5.8	18	3.6	0.09
Non-residence 83	634.318	6232.305	3.4	0.8	4.6	15	3.1	0.08
Non-residence 84	633.676	6232.153	3.9	0.9	5.9	19	3.6	0.09
Non-residence 85	633.702	6232.170	3.9	0.9	5.9	18	3.6	0.09
Non-residence 86	636.793	6232.437	1.4	0.4	2.2	7	1.5	0.04
Non-residence 87	636.794	6232.426	1.3	0.4	2.2	6	1.5	0.04
Non-residence 88	636.747	6232.422	1.4	0.4	2.2	7	1.5	0.04
Non-residence 89	636.776	6232.519	1.4	0.4	2.3	7	1.4	0.04
Non-residence 90	633.791	6232.477	3.6	0.8	6.2	19	3.3	0.09
Non-residence 91	633.665	6232.282	3.7	0.9	6.3	19	3.6	0.09
Non-residence 92	633.664	6232.298	3.7	0.9	6.3	19	3.6	0.09
Non-residence 93	633.685	6232.296	3.7	0.9	6.2	19	3.5	0.09
Non-residence 94	633.676	6232.289	3.7	0.9	6.2	19	3.6	0.09
Non-residence 95	633.706	6232.222	3.9	0.9	6.0	19	3.6	0.09
Non-residence 96	633.703	6232.200	3.9	0.9	6.0	18	3.6	0.09
Non-residence 97	633.730	6232.221	3.8	0.9	5.9	18	3.5	0.09
Non-residence 98	633.806	6232.494	3.5	0.8	6.1	18	3.3	0.09
Non-residence 99	633.805	6232.498	3.5	0.8	6.1	18	3.3	0.09
Non-residence 100	636.768	6232.602	1.4	0.4	2.4	7	1.4	0.03
Non-residence 100	633.805	6232.503	3.5	0.4	6.1	18	3.3	0.09
Non-residence 102	633.908	6232.447	3.5	0.8	5.8	17	3.3	0.09
	633.911	6232.447	3.5	0.8	5.9	17	3.3	0.08

	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 104	632.547	6230.574	5.1	1.6	9.5	27	7.9	0.2
Non-residence 105	631.982	6231.163	7.7	2.2	12	38	9.5	0.2
Non-residence 106	631.982	6231.127	7.7	2.2	11	38	9.4	0.2
Non-residence 107	631.960	6231.110	7.8	2.2	12	38	9.5	0.2
Non-residence 108	632.131	6231.351	7.4	2.0	11	36	8.8	0.2
Non-residence 109	632.237	6231.408	6.9	1.8	11	36	8.1	0.2
Non-residence 110	630.192	6232.050	6.4	1.1	10	26	3.8	0.1
Non-residence 111	630.176	6232.008	6.6	1.1	11	29	4.1	0.1
Non-residence 112	630.031	6232.003	6.5	1.1	11	31	3.9	0.1
Non-residence 113	630.039	6231.965	6.8	1.2	12	33	4.2	0.1
Non-residence 114	630.433	6232.124	6.1	1.1	11	29	3.8	0.1
Non-residence 115	630.415	6232.072	6.5	1.2	12	32	4.2	0.1
Non-residence 116	630.397	6232.048	6.7	1.2	12	33	4.4	0.1
Non-residence 117	630.429	6232.027	7.0	1.2	13	35	4.7	0.1
Non-residence 118	630.394	6231.969	7.5	1.3	15	38	5.3	0.1
Non-residence 119	630.393	6231.980	7.4	1.3	14	37	5.2	0.1
Non-residence 120	630.419	6231.972	7.5	1.3	15	38	5.4	0.1
Non-residence 121	630.431	6231.946	7.9	1.4	16	41	5.8	0.2
Non-residence 122	630.345	6232.115	5.9	1.1	10	27	3.7	0.1
Non-residence 123	630.273	6232.059	6.4	1.1	9.9	27	3.9	0.1
Non-residence 124	630.296	6232.052	6.4	1.1	10	28	4.1	0.1
Non-residence 125	630.300	6232.083	6.2	1.1	9.9	27	3.8	0.1
Non-residence 126	630.256	6232.077	6.3	1.1	9.5	25	3.7	0.1
Non-residence 127	630.239	6232.054	6.6	1.1	10	27	3.9	0.1
Non-residence 128	628.501	6232.716	3.1	0.5	4.6	13	1.2	0.04
Non-residence 129	631.705	6231.574	9.7	2.3	25	83	12	0.4
Non-residence 130	633.145	6231.522	4.6	1.2	6.2	19	4.7	0.1
Non-residence 131	633.295	6231.506	4.4	1.2	5.8	18	4.5	0.1
Non-residence 132	633.349	6231.512	4.3	1.1	5.7	17	4.4	0.1
Non-residence 133	633.275	6231.506	4.4	1.1	5.8	18	4.5	0.1
Non-residence 134	633.386	6231.498	4.2	1.1	5.6	17	4.3	0.1
Non-residence 135	633.269	6230.441	3.7	1.1	5.0	15	4.2	0.1
Non-residence 136	633.237	6230.581	3.6	1.1	4.8	14	4.2	0.1
Non-residence 137	633.292	6230.470	3.6	1.1	4.9	15	4.2	0.1
Non-residence 138	633.261	6230.472	3.7	1.1	5.0	15	4.2	0.1
Non-residence 139	633.225	6230.449	3.7	1.1	5.0	15	4.3	0.1
Non-residence 140	633.391	6230.914	3.4	1.0	4.3	12	3.8	0.1
Non-residence 141	633.630	6230.661	3.2	1.0	4.0	13	3.5	0.1
Non-residence 142	633.628	6230.657	3.2	1.0	4.0	13	3.5	0.1
Non-residence 143	631.766	6232.355	6.7	1.2	9.8	29	4.6	0.1
Non-residence 144	631.411	6232.490	5.6	1.0	8.1	23	3.5	0.1
Non-residence 145	631.403	6232.490	5.6	1.0	8.1	22	3.6	0.1
Non-residence 146	631.876	6232.603	5.9	1.0	8.7	22	3.8	0.1
Non-residence 147	632.203	6232.437	6.6	1.1	8.1	20	4.5	0.1
Non-residence 148	632.427	6232.437	5.9	1.1	7.2	24	4.5	0.1
Non-residence 149	632.632	6232.445	5.9	1.0	7.6	21	4.2	0.1
Non-residence 150	632.430	6231.891	5.3 6.4	1.4	11	37	4.2 6.2	0.1
Non-residence 150			4.2	0.9	6.4	19	6.2 3.6	
Non-residence 151	632.963	6232.611		1.0	7.1	21	4.0	0.1
Non-residence 152	632.828 633.145	6232.481 6232.700	4.6 3.9	0.8	6.0	18	4.0 3.4	0.1
			3.9	0.8	6.0	18	3.4	
Non-residence 154 Non-residence 155	633.134 633.442	6232.689 6232.703	3.9				3.4	0.1
	10.3.3 447	10232.103	13.0	0.8	6.1	18	13.2	0.1

	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 157	633.105	6232.405	4.3	0.9	7.6	23	4.0	0.1
Non-residence 158	633.046	6232.480	4.3	0.9	7.1	22	3.9	0.1
Non-residence 159	633.419	6232.447	3.9	0.9	7.0	21	3.6	0.1
Non-residence 160	633.452	6232.453	3.9	0.9	6.9	21	3.5	0.1
Non-residence 161	633.424	6232.451	3.9	0.9	7.0	21	3.6	0.1
Non-residence 162	633.127	6232.758	3.8	0.8	5.8	17	3.3	0.1
Non-residence 163	630.249	6232.842	3.0	0.5	3.7	11	1.4	0.04
Non-residence 164	630.298	6232.738	3.3	0.6	4.3	12	1.6	0.05
Non-residence 165	630.247	6232.782	3.1	0.5	3.9	11	1.5	0.05
Non-residence 166	634.386	6233.116	2.6	0.6	4.8	14	2.5	0.06
Non-residence 167	634.207	6232.732	3.4	0.7	5.4	16	3.0	0.07
Non-residence 168	635.335	6233.676	1.8	0.4	3.5	10	1.7	0.05
Non-residence 169	635.310	6233.690	1.8	0.4	3.5	10	1.7	0.05
Non-residence 170	636.056	6233.139	1.7	0.4	2.9	8	1.6	0.05
Non-residence 171	635.660	6233.183	1.9	0.5	3.4	10	1.7	0.05
Non-residence 172	635.581	6233.534	1.8	0.4	3.5	10	1.7	0.05
Non-residence 173	635.575	6233.206	2.0	0.5	3.5	10	1.8	0.05
Non-residence 174	635.529	6233.502	1.8	0.4	3.6	10	1.7	0.05
Non-residence 175	635.633	6233.267	1.9	0.4	3.5	10	1.7	0.05
Non-residence 176	635.687	6233.405	1.8	0.4	3.5	10	1.7	0.05
Non-residence 177	635.751	6233.348	1.8	0.4	3.4	10	1.7	0.05
Non-residence 177	635.820	6233.359	1.8	0.4	3.4	10	1.6	0.05
Non-residence 179	630.258	6232.922	2.7	0.4	3.5	10	1.4	0.03
Non-residence 180	634.541	6233.203	2.7	0.5	4.6	14	2.3	0.04
Non-residence 181	633.385	6233.309	2.5	0.8	4.0 5.0	14	3.1	0.08
Non-residence 182	633.348	6233.268	2.7	0.7	5.0	16	3.1	0.09
Non-residence 183	633.503		2.7	0.7	4.9	15	2.9	0.09
Non-residence 184	633.633	6233.342 6233.221	2.8	0.7	4.9 5.0	13	2.9	0.08
Non-residence 185	634.933	6233.444	2.0	0.7	3.9	14	2.0	0.08
				0.5	3.4			
Non-residence 186	635.804	6233.334	1.8	0.4	5.0	10 15	1.6	0.05
Non-residence 187	633.576	6233.209	2.9				2.8	0.08
Non-residence 188	635.793	6233.323	1.8	0.4	3.4 3.4	10	1.7	0.05
Non-residence 189 Non-residence 190	635.790	6233.311	1.8	0.4	5.1	10	1.7	0.05
	633.658	6233.135	3.0	0.7		15	2.8	0.08
Non-residence 191	635.803 633.656	6233.303 6233.119	1.8 3.0	0.4	3.4 5.1	10 15	1.7 2.8	0.05
Non-residence 192				1 -			+	0.08
Non-residence 193	635.749	6233.372	1.8	0.4	3.4	10	1.7	0.05
Non-residence 194	634.690	6233.086	2.5	0.6	4.5	13	2.3	0.06
Non-residence 195	635.608	6233.285	1.9	0.4	3.5	10	1.7	0.05
Non-residence 196	636.833	6232.745	1.4	0.4	2.5	8	1.4	0.04
Non-residence 197	633.745	6233.168	2.9	0.7	5.0	15	2.7	0.08
Non-residence 198	636.822	6232.743	1.4	0.4	2.5	8	1.4	0.04
Non-residence 199	633.760	6233.162	2.9	0.7	5.0	15	2.7	0.08
Non-residence 200	636.790	6232.734	1.4	0.4	2.5	8	1.4	0.04
Non-residence 201	636.777	6232.764	1.4	0.4	2.5	8	1.4	0.04
Non-residence 202	633.639	6233.221	2.8	0.7	5.0	14	2.8	0.08
Non-residence 203	633.658	6233.220	2.8	0.7	5.0	14	2.7	0.08
Non-residence 204	633.619	6233.125	3.0	0.7	5.1	15	2.9	0.08
Non-residence 205	634.432	6233.402	2.3	0.5	4.4	13	2.2	0.06
Non-residence 206	634.423	6233.360	2.3	0.5	4.4	13	2.2	0.06
Non-residence 207	634.340	6233.269	2.4	0.6	4.6	13	2.3	0.06
Non-residence 208	634.914	6233.603	2.1	0.5	3.9	11	1.9	0.05
Non-residence 209	634.903	6233.556	2.1	0.5	3.9	11	1.9	0.05

Description	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 210	635.007	6233.494	2.1	0.5	3.8	11	1.9	0.05
Non-residence 211	635.007	6233.556	2.0	0.5	3.8	11	1.9	0.05
Non-residence 212	635.030	6233.644	2.0	0.5	3.8	11	1.8	0.05
Non-residence 213	635.234	6233.722	1.9	0.4	3.6	11	1.7	0.05
Non-residence 214	635.199	6233.691	1.9	0.4	3.6	11	1.8	0.05
Non-residence 215	636.133	6233.165	1.7	0.4	2.9	8	1.6	0.04
Non-residence 216	629.360	6232.774	3.0	0.5	5.2	14	1.2	0.04
Non-residence 217	629.356	6232.783	3.0	0.5	5.2	14	1.2	0.04
Non-residence 218	629.578	6232.895	2.7	0.4	4.6	12	1.2	0.04
Non-residence 219	629.226	6232.883	2.9	0.4	4.7	13	1.1	0.04
Non-residence 220	629.334	6232.855	2.8	0.4	4.9	13	1.2	0.04
Non-residence 221	629.324	6232.873	2.8	0.4	4.9	13	1.2	0.04
Non-residence 222	629.292	6232.864	2.9	0.4	4.9	13	1.2	0.04
Non-residence 223	629.279	6232.862	2.9	0.4	4.9	13	1.2	0.04
Non-residence 224	629.331	6232.925	2.7	0.4	4.7	12	1.1	0.04
Non-residence 225	629.345	6232.916	2.7	0.4	4.7	12	1.1	0.04
Non-residence 226	629.348	6232.935	2.7	0.4	4.7	12	1.1	0.04
Non-residence 227	633.401	6232.733	3.5	0.8	5.9	18	3.2	0.08
Non-residence 228	630.655	6232.303	5.2	1.1	9.5	26	3.3	0.08
Non-residence 229	630.407	6232.300	4.9	1.0	8.0	22	2.9	0.07
Non-residence 230	630.452	6232.324	4.9	1.0	8.3	22	2.8	0.07
Non-residence 231	630.360	6232.328	4.8	0.9	7.5	20	2.7	0.07
Non-residence 232	630.809	6232.413	5.1	0.9	8.6	24	3.0	0.08
Non-residence 233	630.679	6232.377	4.9	0.9	8.8	24	2.9	0.07
Non-residence 234	635.280	6230.416	2.3	0.7	2.9	8	2.4	0.06
Non-residence 235	634.753	6230.706	2.4	0.7	3.3	10	2.6	0.06
Non-residence 236	634.459	6230.807	2.5	0.8	3.3	10	2.7	0.07
Non-residence 237	634.485	6230.766	2.5	0.8	3.4	11	2.7	0.07
Non-residence 238	634.674	6230.781	2.4	0.7	3.2	10	2.5	0.06
Non-residence 239	634.719	6230.837	2.4	0.7	3.1	10	2.5	0.06
Non-residence 240	634.543	6230.948	2.5	0.7	3.1	10	2.7	0.06
Non-residence 241	634.915	6230.724	2.3	0.7	3.2	10	2.5	0.06
Non-residence 242	634.915	6230.654	2.4	0.7	3.2	10	2.5	0.06
Non-residence 243	635.018	6230.724	2.3	0.7	3.1	9	2.5	0.06
Non-residence 244	635.096	6230.655	2.3	0.7	3.1	9	2.4	0.06
Non-residence 245	635.128	6230.627	2.3	0.7	3.1	9	2.4	0.06
Non-residence 246	635.559	6230.527	2.1	0.6	2.7	8	2.3	0.06
Non-residence 247	630.258	6232.565	3.7	0.6	4.9	14	1.8	0.05
Non-residence 248	631.977	6226.320	4.9	0.7	6.3	17	1.8	0.06
Non-residence 249	633.954	6232.464	3.5	0.7	5.7	17	3.2	0.08
Non-residence 250	634.021	6232.502	3.5	0.8	5.6	17	3.2	0.08
Non-residence 251	636.675	6232.516	1.4	0.4	2.3	7	1.5	0.03
Non-residence 252	636.764	6232.524	1.4	0.4	2.3	7	1.5	0.04
Non-residence 252	633.791	6232.481	3.6	0.4	6.2	19	3.3	0.04
Non-residence 253	633.682	6232.260	3.8	0.8	6.2	19	3.6	0.09
Non-residence 255	633.808	6232.445	3.6	0.9	6.1	19	3.3	0.09
Non-residence 255	633.820	6232.445	3.5	0.8	6.1	18	3.3	0.09
Non-residence 250	631.968	6231.106	7.7	2.2	11	38	9.4	0.09
Non-residence 257	632.215	6231.407	6.9	1.9	11	36	9.4 8.2	0.2
Non-residence 258	630.179	6231.985	6.8	1.9	12	30	6.2 4.3	0.2
			6.4	1.1	12	31		
Non-residence 260	630.455	6232.103	-				4.1	0.1
Non-residence 261	630.434	6231.940	8.0	1.4	16	42	5.9	0.2

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 263	628.548	6232.661	3.2	0.5	4.9	13	1.3	0.05
Non-residence 264	631.692	6231.654	8.8	2.2	24	78	11	0.4
Non-residence 265	633.277	6231.494	4.4	1.2	5.8	18	4.5	0.1
Non-residence 266	633.164	6230.500	3.8	1.2	5.1	15	4.4	0.1
Non-residence 267	633.210	6230.535	3.6	1.1	4.9	15	4.3	0.1
Non-residence 268	633.276	6230.498	3.6	1.1	4.9	15	4.2	0.1
Non-residence 269	633.220	6230.512	3.6	1.1	4.9	15	4.3	0.1
Non-residence 270	633.590	6230.696	3.2	1.0	4.0	12	3.6	0.09
Non-residence 271	634.866	6230.491	2.5	0.7	3.5	11	2.7	0.06
Non-residence 272	631.883	6232.606	5.9	1.0	8.7	26	3.8	0.1
Non-residence 273	632.540	6232.426	5.6	1.1	7.6	22	4.3	0.1
Non-residence 274	632.425	6231.891	6.4	1.4	11	37	6.2	0.2
Non-residence 275	633.140	6232.682	3.9	0.8	6.0	18	3.4	0.09
Non-residence 276	633.196	6232.449	4.2	0.9	7.3	22	3.8	0.1
Non-residence 277	630.243	6232.781	3.1	0.5	3.9	12	1.5	0.05
Non-residence 278	630.280	6232.975	2.6	0.5	3.4	10	1.3	0.04
Non-residence 279	635.385	6233.556	1.9	0.4	3.5	10	1.8	0.05
Non-residence 280	635.106	6233.424	2.0	0.5	3.8	11	1.9	0.05
Non-residence 281	635.812	6233.348	1.8	0.4	3.4	10	1.6	0.05
Non-residence 282	635.182	6233.689	1.9	0.4	3.6	11	1.8	0.05
Non-residence 283	636.388	6232.996	1.5	0.4	2.7	8	1.5	0.04
Non-residence 284	629.248	6233.007	2.6	0.4	4.4	12	1.0	0.04
Non-residence 285	629.176	6232.862	2.9	0.4	4.7	13	1.1	0.04
Non-residence 286	629.578	6232.917	2.7	0.4	4.6	12	1.2	0.04
Non-residence 287	629.256	6232.919	2.8	0.4	4.7	12	1.1	0.04

(a) 24-hour average based on worst-case 30-day period; units in mg/dm²-d.

Becontor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 1	630.709	6228.334	18	5.4	20	38	6.6	0.8
Non-residence 2	630.724	6228.349	18	5.4	21	39	6.5	0.8
Non-residence 3	631.896	6230.979	18	5.4	20	38	6.5	0.8
Non-residence 4	630.996	6232.371	20	6.0	22	49	8.4	0.9
Non-residence 5	630.784	6232.310	17	5.7	18	36	8.0	0.9
Non-residence 6	630.699	6232.333	17	5.7	18	36	7.9	0.9
Non-residence 7	630.658	6232.313	17	5.7	18	35	7.9	0.9
Non-residence 8	630.599	6232.308	17	5.7	18	36	7.9	0.9
Non-residence 9	630.325	6232.338	17	5.7	18	36	7.9	0.9
Non-residence 10	630.351	6232.358	17	5.7	18	36	7.9	0.9
Non-residence 11	630.361	6232.357	17	5.7	18	36	7.9	0.9
Non-residence 12	630.319	6232.360	17	5.7	18	36	7.9	0.9
Non-residence 12	630.328	6232.360	17	5.7	18	36	7.9	0.9
Non-residence 14				5.7		36	7.8	
	630.302	6232.348	17		18			0.9
Non-residence 15	630.246	6232.343	17	5.7	18	36	7.9	0.9
Non-residence 16	630.255	6232.364	17	5.7	18	36	7.8	0.9
Non-residence 17	630.255	6232.349	17	5.7	18	35	7.8	0.9
Non-residence 18	630.896	6232.415	17	5.7	19	36	7.9	0.9
Non-residence 19	630.888	6232.417	18	5.6	19	39	7.1	0.8
Non-residence 20	630.895	6232.422	18	5.5	22	41	6.7	0.8
Non-residence 21	630.528	6232.328	19	6.1	20	41	9.8	0.9
Non-residence 22	630.527	6232.347	18	6.0	20	39	9.3	0.9
Non-residence 23	630.499	6232.316	18	6.0	20	39	9.0	0.9
Non-residence 24	630.473	6232.305	17	5.7	19	35	7.8	0.9
Non-residence 25	630.447	6232.321	19	5.8	21	45	8.8	0.9
Non-residence 26	630.301	6232.359	18	5.5	19	36	6.7	0.8
Non-residence 27	630.282	6232.385	16	5.1	16	30	5.8	0.8
Non-residence 28	630.933	6232.456	16	5.1	16	30	5.8	0.8
Non-residence 29	630.771	6232.361	16	5.1	16	30	5.8	0.8
Non-residence 30	635.021	6230.444	16	5.1	16	30	5.8	0.8
Non-residence 31	635.133	6230.463	16	5.1	17	31	5.9	0.8
Non-residence 32	634.933	6230.465	16	5.1	17	31	5.9	0.8
Non-residence 33	634.669	6230.722	16	5.1	17	31	5.9	0.8
Non-residence 34	634.373	6230.747	16	5.1	17	31	5.9	0.8
Non-residence 35	634.381	6230.741	15	5.1	16	28	5.7	0.8
Non-residence 36	634.454	6230.786	16	5.1	16	30	5.8	0.8
Non-residence 37	634.721	6230.824	16	5.1	16	30	5.8	0.8
Non-residence 38	634.904	6230.735	16	5.1	16	30	5.8	0.8
Non-residence 39	634.976	6230.724	16	5.1	16	30	5.8	0.8
Non-residence 40	634.975	6230.734	16	5.1	16	30	5.8	0.8
Non-residence 41	635.079	6230.582	16	5.1	16	30	5.8	0.8
Non-residence 42	634.982	6230.433	16	5.1	16	30	5.8	0.8
Non-residence 43	634.986	6230.434	16	5.1	16	30	5.8	0.8
Non-residence 44	634.990	6230.433	16	5.1	17	31	5.9	0.8
Non-residence 45	635.064	6230.733	16	5.1	16	30	5.9	0.8
Non-residence 46	635.559	6230.553	16	5.1	16	30	5.9	0.8
Non-residence 47	630.266	6232.703	16	5.1	16	30	5.9	0.8
Non-residence 48	630.244	6232.580	16	5.1	16	30	5.9	0.8
Non-residence 49	630.299	6232.482	16	5.1	17	30	5.9	0.8
	633.556	6232.393	16	5.1	17	31	5.9	0.8

Table G.4 Maximum predicted concentrations of particulate matter with background at ground-truthed non-residences (in µg/m³)

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 51	633.672	6232.107	16	5.1	16	29	5.7	0.8
Non-residence 52	633.541	6231.953	16	5.1	16	30	5.8	0.8
Non-residence 53	633.535	6231.964	16	5.1	16	29	5.7	0.8
Non-residence 54	631.988	6226.324	16	5.1	16	29	5.7	0.8
Non-residence 55	633.707	6232.186	16	5.1	17	31	5.9	0.8
Non-residence 56	634.245	6232.454	16	5.1	17	31	5.9	0.8
Non-residence 57	634.231	6232.707	16	5.1	17	31	5.9	0.8
Non-residence 58	634.232	6232.711	16	5.1	17	30	5.9	0.8
Non-residence 59	633.703	6232.491	16	5.1	17	31	5.9	0.8
Non-residence 60	633.718	6232.487	16	5.2	16	29	6.0	0.8
Non-residence 61	634.013	6232.543	16	5.2	16	30	6.1	0.8
Non-residence 62	634.065	6232.496	16	5.3	17	30	6.3	0.8
Non-residence 63	636.582	6232.572	16	5.3	17	30	6.3	0.8
Non-residence 64	634.044	6232.415	16	5.3	17	30	6.3	0.8
Non-residence 65	636.569	6232.484	16	5.2	16	30	6.1	0.8
Non-residence 66	634.109	6232.491	16	5.2	16	29	6.0	0.8
Non-residence 67	636.664	6232.507	16	5.3	17	30	6.3	0.8
Non-residence 68	634.117	6232.506	16	5.2	16	30	6.1	0.8
Non-residence 69	634.130	6232.514	16	5.2	16	29	6.0	0.8
Non-residence 70	636.698	6232.511	16	5.3	17	30	6.3	0.8
Non-residence 71	636.681	6232.499	16	5.2	16	29	6.0	0.8
Non-residence 72	636.727	6232.539	16	5.2	16	30	6.1	0.8
Non-residence 73	636.788	6232.473	16	5.2	16	30	6.1	0.8
Non-residence 74	633.847	6232.489	16	5.2	16	30	6.1	0.8
Non-residence 75	633.760	6232.438	16	5.2	16	30	6.1	0.8
Non-residence 76	634.147	6232.482	16	5.2	16	30	6.1	0.8
Non-residence 77	633.694	6232.129	16	5.2	16	30	6.1	0.8
Non-residence 78	633.664	6232.127	16	5.2	16	30	6.1	0.8
Non-residence 79	633.683	6232.132	16	5.2	16	30	6.1	0.8
Non-residence 80	633.703	6232.133	16	5.2	16	29	6.0	0.8
Non-residence 81	633.712	6232.132	16	5.2	16	30	6.1	0.8
Non-residence 82	633.695	6232.140	16	5.2	16	29	6.0	0.8
Non-residence 83	634.318	6232.305	16	5.2	16	30	6.1	0.8
Non-residence 84	633.676	6232.153	16	5.2	17	30	6.1	0.8
Non-residence 85	633.702	6232.170	16	5.2	17	30	6.1	0.8
Non-residence 86	636.793	6232.437	16	5.2	17	30	6.1	0.8
Non-residence 87	636.794	6232.426	16	5.2	17	30	6.1	0.8
Non-residence 88	636.747	6232.422	16	5.2	17	30	6.1	0.8
Non-residence 89	636.776	6232.519	16	5.2	17	30	6.1	0.8
Non-residence 90	633.791	6232.477	16	5.2	17	30	6.1	0.8
Non-residence 91	633.665	6232.282	16	5.1	16	30	5.9	0.8
Non-residence 92	633.664	6232.298	16	5.1	16	30	5.9	0.8
Non-residence 93	633.685	6232.296	16	5.1	16	30	5.9	0.8
Non-residence 94	633.676	6232.289	16	5.1	17	30	5.9	0.8
Non-residence 95	633.706	6232.229	16	5.1	16	30	5.9	0.8
Non-residence 96	633.703	6232.222	16	5.1	16	30	5.9	0.8
Non-residence 97	633.730	6232.220	16	5.1	16	30	5.9	0.8
Non-residence 98	633.806	6232.494	16	5.1	16	30	5.9	0.8
Non-residence 99	633.805	6232.494	16	5.1	16	30	5.9	0.8
Non-residence 100	636.768	6232.602	16	5.1	16	30	5.9	0.8
Non-residence 100	633.805	6232.503	16	5.1	16	30	5.9	0.8
			16	5.1	17			
Non-residence 102	633.908	6232.447	10	5.2 5.1	17	30	6.1	0.8

Bosontor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 104	632.547	6230.574	16	5.2	16	29	6.0	0.8
Non-residence 105	631.982	6231.163	16	5.2	16	29	6.0	0.8
Non-residence 106	631.982	6231.127	16	5.2	16	29	6.0	0.8
Non-residence 107	631.960	6231.110	16	5.2	16	29	6.0	0.8
Non-residence 108	632.131	6231.351	16	5.2	16	29	6.0	0.8
Non-residence 109	632.237	6231.408	15	5.1	16	28	5.7	0.8
Non-residence 110	630.192	6232.050	15	5.1	16	28	5.7	0.8
Non-residence 111	630.176	6232.008	16	5.2	17	31	5.8	0.8
Non-residence 112	630.031	6232.003	16	5.2	16	29	6.0	0.8
Non-residence 113	630.039	6231.965	16	5.2	16	29	6.0	0.8
Non-residence 114	630.433	6232.124	15	5.1	16	28	5.8	0.8
Non-residence 115	630.415	6232.072	15	5.1	16	28	5.8	0.8
Non-residence 116	630.397	6232.048	16	5.2	16	29	6.0	0.8
Non-residence 117	630.429	6232.027	15	5.1	16	28	5.8	0.8
Non-residence 118	630.394	6231.969	16	5.2	16	29	6.0	0.8
Non-residence 119	630.393	6231.980	15	5.1	16	28	5.8	0.8
Non-residence 120	630.419	6231.972	16	5.2	16	29	6.0	0.8
Non-residence 121	630.431	6231.946	16	5.2	16	29	6.0	0.8
Non-residence 122	630.345	6232.115	16	5.2	16	29	6.0	0.8
Non-residence 123	630.273	6232.059	16	5.2	16	29	6.0	0.8
Non-residence 124	630.296	6232.052	16	5.2	16	29	6.0	0.8
Non-residence 125	630.300	6232.083	16	5.2	16	29	6.0	0.8
Non-residence 126	630.256	6232.077	16	5.2	16	29	6.0	0.8
Non-residence 127	630.239	6232.054	16	5.2	16	29	6.0	0.8
Non-residence 128	628.501	6232.716	16	5.2	16	29	6.0	0.8
Non-residence 129	631.705	6231.574	15	5.1	16	28	5.6	0.8
Non-residence 130	633.145	6231.522	15	5.1	16	28	5.6	0.8
Non-residence 131	633.295	6231.506	15	5.1	16	28	5.6	0.8
Non-residence 132	633.349	6231.512	16	5.1	17	30	5.7	0.8
Non-residence 133	633.275	6231.506	16	5.1	17	30	5.7	0.8
Non-residence 134	633.386	6231.498	16	5.2	18	32	5.9	0.8
Non-residence 135	633.269	6230.441	16	5.1	17	31	5.7	0.8
Non-residence 136	633.237	6230.581	16	5.1	17	30	5.7	0.8
Non-residence 137	633.292	6230.470	16	5.1	17	30	5.7	0.8
Non-residence 138	633.261	6230.472	16	5.1	17	30	5.7	0.8
Non-residence 139	633.225	6230.449	16	5.1	17	30	5.7	0.8
Non-residence 140	633.391	6230.914	16	5.1	17	30	5.7	0.8
Non-residence 141	633.630	6230.661	16	5.1	17	30	5.7	0.8
Non-residence 142	633.628	6230.657	15	5.0	16	28	5.5	0.8
Non-residence 143	631.766	6232.355	16	5.1	17	30	5.7	0.8
Non-residence 144	631.411	6232.490	16	5.1	17	30	5.7	0.8
Non-residence 145	631.403	6232.484	36	10.7	43	115	35.2	1.4
Non-residence 146	631.876	6232.603	37	10.9	44	115	37.5	1.4
Non-residence 147	632.203	6232.437	21	6.0	22	51	8.9	0.9
Non-residence 148	632.427	6232.483	21	6.1	22	53	9.0	0.9
Non-residence 149	632.632	6232.445	20	6.0	22	52	8.6	0.9
Non-residence 150	632.430	6231.891	20	6.2	22	52	8.9	0.9
Non-residence 151	632.963	6232.611	20	6.1	22	51	8.6	0.9
Non-residence 152	632.828	6232.481	20	5.9	22	45	8.0	0.9
Non-residence 153	633.145	6232.700	20	5.8	21	45	7.9	0.9
Non-residence 154	633.134	6232.689	20	5.8	21	45	7.9	0.9
Non-residence 155	633.442	6232.703	20	5.8	21	45	7.9	0.9
INDITIONUCTION TOO	000.442	0202.100	20	5.8	21	τJ	1.3	0.0

Bosontor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 157	633.105	6232.405	20	5.8	21	43	7.7	0.9
Non-residence 158	633.046	6232.480	20	5.8	21	43	7.8	0.9
Non-residence 159	633.419	6232.447	20	5.9	21	50	8.5	0.9
Non-residence 160	633.452	6232.453	20	5.9	21	50	8.5	0.9
Non-residence 161	633.424	6232.451	20	6.0	22	50	8.3	0.9
Non-residence 162	633.127	6232.758	17	5.7	18	36	7.9	0.9
Non-residence 163	630.249	6232.842	17	5.7	19	36	7.9	0.9
Non-residence 164	630.298	6232.738	17	5.7	19	35	8.0	0.9
Non-residence 165	630.247	6232.782	17	5.7	18	36	7.8	0.9
Non-residence 166	634.386	6233.116	19	6.0	22	45	9.3	0.9
Non-residence 167	634.207	6232.732	20	5.7	21	43	7.2	0.9
Non-residence 168	635.335	6233.676	16	5.4	18	33	6.9	0.8
Non-residence 169	635.310	6233.690	19	5.8	21	44	8.7	0.9
Non-residence 170	636.056	6233.139	19	5.8	21	45	8.8	0.9
Non-residence 171	635.660	6233.183	18	5.8	21	42	8.5	0.9
Non-residence 172	635.581	6233.534	19	5.9	22	45	9.0	0.9
Non-residence 173	635.575	6233.206	19	5.9	22	45	9.1	0.9
Non-residence 174	635.529	6233.502	19	5.9	22	45	9.0	0.9
Non-residence 175	635.633	6233.267	19	5.9	22	45	9.0	0.9
Non-residence 176	635.687	6233.405	19	5.9	22	44	9.0	0.9
Non-residence 177	635.751	6233.348	19	5.9	22	45	9.0	0.9
Non-residence 178	635.820	6233.359	18	5.8	20	41	8.5	0.9
Non-residence 179	630.258	6232.922	19	5.9	22	45	9.0	0.9
Non-residence 180	634.541	6233.203	16	5.4	18	33	6.9	0.8
Non-residence 181	633.385	6233.309	16	5.4	18	33	6.9	0.8
Non-residence 182	633.348	6233.268	19	5.8	21	45	8.7	0.9
Non-residence 183	633.503	6233.342	19	5.9	22	45	9.0	0.9
Non-residence 184	633.633	6233.221	19	5.9	22	45	9.0	0.9
Non-residence 185	634.933	6233.444	23	7.2	29	64	15	1.0
Non-residence 186	635.804	6233.334	23	7.2	29	65	15	1.0
Non-residence 187	633.576	6233.209	22	7.0	28	62	14	1.0
Non-residence 188	635.793	6233.323	22	6.8	27	62	13	1.0
Non-residence 189	635.790	6233.311	21	6.1	23	53	9.2	0.9
Non-residence 190	633.658	6233.135	22	6.1	23	55	9.5	0.9
Non-residence 191	635.803	6233.303	21	6.1	24	57	9.3	0.9
Non-residence 192	633.656	6233.119	22	6.2	24	59	9.6	0.9
Non-residence 193	635.749	6233.372	21	6.1	23	56	9.2	0.9
Non-residence 194	634.690	6233.086	22	6.2	23	58	9.6	0.9
Non-residence 195	635.608	6233.285	22	6.2	23	59	9.8	0.9
Non-residence 196	636.833	6232.745	22	6.2	23	61	10	0.9
Non-residence 197	633.745	6233.168	23	6.3	24	64	11	0.9
Non-residence 198	636.822	6232.743	23	6.3	24	63	11	0.9
Non-residence 199	633.760	6233.162	23	6.3	24	65	11	0.9
Non-residence 200	636.790	6232.734	23	6.4	24	67	11	0.9
Non-residence 200	636.777	6232.764	23	6.1	23	53	9.3	0.9
Non-residence 202	633.639	6233.221	21	6.1	23	53	9.3	0.9
Non-residence 202	633.658	6233.220	21	6.1	23	53	9.2	0.9
Non-residence 203	633.619	6233.125	21	6.1	22	53	9.3	0.9
Non-residence 204	634.432	6233.402	18	5.5	23	39	9.3 6.6	0.9
Non-residence 205	634.423	6233.360	25	5.5 7.3	34	110	18	1.2
			20	6.2	24	45	10	0.9
Non-residence 207	634.340	6233.269						
Non-residence 208	634.914	6233.603	21	6.0	21	49	8.9	0.9

Bosontor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 210	635.007	6233.494	21	6.0	22	52	9.2	0.9
Non-residence 211	635.007	6233.556	22	6.1	23	51	9.9	0.9
Non-residence 212	635.030	6233.644	21	6.0	22	47	9.6	0.9
Non-residence 213	635.234	6233.722	20	6.0	22	48	9.6	0.9
Non-residence 214	635.199	6233.691	21	6.4	27	63	12	1.0
Non-residence 215	636.133	6233.165	20	6.0	22	47	9.4	0.9
Non-residence 216	629.360	6232.774	18	5.5	19	38	6.9	0.8
Non-residence 217	629.356	6232.783	18	5.6	20	41	7.9	0.9
Non-residence 218	629.578	6232.895	17	5.4	19	37	7.1	0.8
Non-residence 219	629.226	6232.883	17	5.4	19	37	7.1	0.8
Non-residence 220	629.334	6232.855	17	5.4	18	35	7.0	0.8
Non-residence 221	629.324	6232.873	17	5.4	18	36	7.1	0.8
Non-residence 222	629.292	6232.864	17	5.4	18	37	7.1	0.8
Non-residence 223	629.279	6232.862	17	5.5	18	36	7.2	0.8
Non-residence 224	629.331	6232.925	17	5.4	18	36	7.1	0.8
Non-residence 225	629.345	6232.916	17	5.4	18	36	7.1	0.8
Non-residence 226	629.348	6232.935	17	5.4	18	36	7.1	0.8
Non-residence 227	633.401	6232.733	18	5.7	21	41	8.1	0.9
Non-residence 228	630.655	6232.303	16	5.4	18	34	6.8	0.8
Non-residence 229	630.407	6232.300	16	5.4	18	34	6.8	0.8
Non-residence 230	630.452	6232.324	18	5.7	21	41	8.2	0.9
Non-residence 231	630.360	6232.328	18	5.6	21	41	8.1	0.9
Non-residence 232	630.809	6232.413	18	5.7	21	41	8.3	0.9
Non-residence 233	630.679	6232.377	17	5.5	20	39	7.6	0.9
Non-residence 234	635.280	6230.416	17	5.5	19	38	7.3	0.9
Non-residence 235	634.753	6230.706	17	5.5	19	38	7.3	0.9
Non-residence 236	634.459	6230.807	17	5.5	19	37	7.3	0.9
Non-residence 237	634.485	6230.766	17	5.4	19	37	7.2	0.9
Non-residence 238	634.674	6230.781	17	5.4	19	37	7.2	0.8
Non-residence 239	634.719	6230.837	17	5.4	18	35	7.0	0.8
Non-residence 240	634.543	6230.948	18	5.5	21	40	6.6	0.8
Non-residence 241	634.915	6230.724	18	5.4	21	39	6.5	0.8
Non-residence 242	634.915	6230.654	19	5.8	21	44	8.6	0.9
Non-residence 243	635.018	6230.724	20	5.9	21	50	8.4	0.9
Non-residence 244	635.096	6230.655	17	5.7	18	36	8.0	0.9
Non-residence 245	635.128	6230.627	18	5.8	19	37	8.1	0.9
Non-residence 246	635.559	6230.527	17	5.7	18	36	7.9	0.9
Non-residence 247	630.258	6232.565	18	5.7	18	36	8.1	0.9
Non-residence 248	631.977	6226.320	17	5.7	18	36	7.9	0.9
Non-residence 249	633.954	6232.464	17	5.7	19	36	7.9	0.9
Non-residence 250	634.021	6232.502	17	5.7	18	36	7.9	0.9
Non-residence 250	636.675	6232.502	17	5.7	19	36	7.8	0.9
Non-residence 252	636.764	6232.524	17	5.7	19	36	7.8	0.9
Non-residence 253	633.791	6232.481	17	5.6	19	34	7.7	0.9
Non-residence 254	633.682	6232.260	19	5.6	20	40	7.2	0.9
Non-residence 255	633.808	6232.445	20	5.6	20	40	7.2	0.9
Non-residence 256	633.820	6232.445	19	5.8	21	43	8.6	0.9
Non-residence 257	631.968	6231.106	18	5.8	21	43	8.6	0.9
Non-residence 257	632.215	6231.407	16	5.6	18	33	6.9	0.9
Non-residence 259	630.179	6231.985	16	5.4	18	33	6.9 6.9	0.8
				5.4 5.8				
Non-residence 260 Non-residence 261	630.455	6232.103	19		21	45	8.7	0.9
NUCH-RESIDENCE Z01	630.434	6231.940	19	5.9	22	45	9.0	0.9

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^{(a}
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Non-residence 263	628.548	6232.661	19	5.8	21	44	8.7	0.9
Non-residence 264	631.692	6231.654	22	6.9	28	62	14	1.0
Non-residence 265	633.277	6231.494	22	6.2	23	57	9.7	0.9
Non-residence 266	633.164	6230.500	21	6.1	23	57	9.5	0.9
Non-residence 267	633.210	6230.535	23	6.4	24	68	11	1.0
Non-residence 268	633.276	6230.498	18	5.6	19	38	7.0	0.8
Non-residence 269	633.220	6230.512	18	5.5	22	40	6.7	0.8
Non-residence 270	633.590	6230.696	19	6.2	20	41	9.8	0.9
Non-residence 271	634.866	6230.491	19	6.1	20	41	9.7	0.9
Non-residence 272	631.883	6232.606	18	6.0	20	39	9.0	0.9
Non-residence 273	632.540	6232.426	18	5.7	19	37	8.1	0.9
Non-residence 274	632.425	6231.891	21	6.0	22	52	9.2	0.9
Non-residence 275	633.140	6232.682	21	6.1	22	49	9.7	0.9
Non-residence 276	633.196	6232.449	19	5.8	21	44	8.8	0.9
Non-residence 277	630.243	6232.781	19	5.9	21	49	9.2	0.9
Non-residence 278	630.280	6232.975	18	5.5	19	36	6.7	0.8
Non-residence 279	635.385	6233.556	17	5.4	19	37	7.2	0.8
Non-residence 280	635.106	6233.424	17	5.5	19	38	7.3	0.9
Non-residence 281	635.812	6233.348	17	5.4	18	36	7.0	0.8
Non-residence 282	635.182	6233.689	17	5.4	19	37	7.2	0.8
Non-residence 283	636.388	6232.996	17	5.4	18	34	6.9	0.8
Non-residence 284	629.248	6233.007	18	5.4	20	38	6.4	0.8
Non-residence 285	629.176	6232.862	18	5.4	21	39	6.5	0.8
Non-residence 286	629.578	6232.917	18	5.4	20	38	6.6	0.8
Non-residence 287	629.256	6232.919	18	5.4	21	39	6.5	0.8

(a) 24-hour average based on worst-case 30-day period; units in mg/dm²-d.

	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 1	644.950	6225.018	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 2	644.872	6225.507	0.6	0.1	1.3	3.6	0.4	0.01
Unknown Building 3	644.880	6225.504	0.6	0.1	1.3	3.6	0.4	0.01
Unknown Building 4	644.952	6225.002	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 5	644.955	6224.971	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 6	644.947	6224.943	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 7	644.947	6224.925	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 8	644.963	6224.933	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 9	644.882	6225.060	0.6	0.1	1.3	3.5	0.4	0.01
Unknown Building 10	643.566	6225.463	0.7	0.1	1.6	4.4	0.5	0.02
Unknown Building 11	643.559	6225.463	0.7	0.1	1.6	4.4	0.5	0.02
Unknown Building 12	643.374	6225.135	0.8	0.1	1.6	4.4	0.5	0.02
Unknown Building 13	643.404	6225.133	0.7	0.1	1.6	4.4	0.5	0.02
Unknown Building 14	643.403	6225.138	0.7	0.1	1.6	4.4	0.5	0.02
Unknown Building 15	643.969	6223.120	0.5	0.1	0.8	2.2	0.3	0.01
Unknown Building 16	643.834	6224.638	0.7	0.1	1.3	3.7	0.4	0.02
Unknown Building 17	643.831	6224.618	0.7	0.1	1.3	3.7	0.4	0.02
Unknown Building 18	644.950	6225.063	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 19	644.943	6225.062	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 20	644.951	6225.052	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 21	644.953	6225.057	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 22	644.933	6225.059	0.6	0.1	1.2	3.5	0.4	0.01
Unknown Building 23	644.990	6224.918	0.6	0.1	1.2	3.3	0.4	0.01
Unknown Building 24	644.990	6224.939	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 25	644.873	6225.014	0.6	0.1	1.2	3.5	0.4	0.01
Unknown Building 26	644.713	6224.856	0.6	0.1	1.2	3.5	0.4	0.01
Unknown Building 27	644.760	6224.826	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 28	644.816	6224.832	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 29	644.815	6224.853	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 30	644.843	6224.892	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 31	644.871	6224.825	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 32	644.906	6224.940	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 33	644.867	6224.969	0.6	0.1	1.2	3.4	0.4	0.01
Unknown Building 34	643.667	6225.359	0.7	0.1	1.6	4.3	0.5	0.02
Unknown Building 35	643.773	6225.267	0.7	0.1	1.5	4.2	0.5	0.02
Unknown Building 36	643.797	6225.227	0.7	0.1	1.5	4.2	0.5	0.02
Unknown Building 37	643.806	6225.168	0.7	0.1	1.5	4.2	0.5	0.02
Unknown Building 38	643.808	6225.162	0.7	0.1	1.5	4.2	0.5	0.02
Unknown Building 39	643.766	6225.177	0.7	0.1	1.5	4.2	0.5	0.02
Unknown Building 40	643.683	6225.204	0.7	0.1	1.5	4.3	0.5	0.02
Unknown Building 41	643.681	6225.221	0.7	0.1	1.5	4.3	0.5	0.02
Unknown Building 42	643.634	6225.271	0.7	0.1	1.6	4.3	0.5	0.02
Unknown Building 43	643.633	6225.252	0.7	0.1	1.6	4.3	0.5	0.02
Unknown Building 44	643.894	6223.384	0.5	0.09	0.9	2.4	0.3	0.01
Unknown Building 45	643.856	6223.461	0.5	0.09	0.9	2.5	0.3	0.01
Unknown Building 46	644.033	6223.096	0.5	0.08	0.8	2.2	0.3	0.01
Unknown Building 47	644.849	6225.100	0.6	0.1	1.3	3.5	0.4	0.01
Unknown Building 48	644.708	6225.309	0.6	0.1	1.3	3.7	0.4	0.01
Unknown Building 49	644.412	6224.131	0.6	0.10	1.0	2.8	0.4	0.01
Unknown Building 50	644.406	6224.149	0.6	0.10	1.0	2.8	0.4	0.01

Table G.5 Maximum predicted concentrations of particulate matter without background at unknown buildings (in µg/m³)

Pocontor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 51	643.639	6225.491	0.7	0.1	1.6	4.3	0.5	0.02
Unknown Building 52	643.623	6225.483	0.7	0.1	1.6	4.4	0.5	0.02
Unknown Building 53	643.691	6225.415	0.7	0.1	1.6	4.3	0.5	0.02
Unknown Building 54	643.709	6225.375	0.7	0.1	1.5	4.3	0.5	0.02
Unknown Building 55	643.700	6225.363	0.7	0.1	1.5	4.3	0.5	0.02
Unknown Building 56	643.664	6225.368	0.7	0.1	1.6	4.3	0.5	0.02
Unknown Building 57	642.358	6232.697	0.8	0.2	1.1	3.1	0.6	0.02
Unknown Building 58	642.370	6232.697	0.8	0.2	1.1	3.1	0.6	0.02
Unknown Building 59	641.707	6232.306	0.8	0.2	1.2	3.5	0.7	0.02
Unknown Building 60	641.716	6232.294	0.8	0.2	1.2	3.5	0.7	0.02
Unknown Building 61	639.639	6231.988	1.0	0.3	1.3	4.0	0.9	0.03
Unknown Building 62	639.669	6231.968	1.0	0.3	1.4	4.0	0.9	0.03
Unknown Building 63	641.692	6232.162	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 64	639.724	6231.971	1.0	0.3	1.4	4.0	0.9	0.03
Unknown Building 65	641.692	6232.158	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 66	642.008	6232.583	0.8	0.2	1.1	3.2	0.6	0.02
Unknown Building 67	639.730	6231.945	1.0	0.3	1.4	4.1	0.9	0.03
Unknown Building 68	641.731	6232.165	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 69	641.983	6232.575	0.8	0.2	1.1	3.2	0.6	0.02
Unknown Building 70	639.694	6231.927	1.0	0.3	1.4	4.1	0.9	0.03
Unknown Building 71	641.719	6232.146	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 72	641.977	6232.585	0.8	0.2	1.1	3.2	0.6	0.02
Unknown Building 73	641.745	6232.141	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 74	641.764	6232.131	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 75	641.939	6232.450	0.8	0.2	1.1	3.3	0.7	0.02
Unknown Building 76	641.800	6232.154	0.8	0.2	1.2	3.5	0.7	0.02
Unknown Building 77	641.817	6232.160	0.8	0.2	1.2	3.5	0.7	0.02
Unknown Building 78	641.827	6232.134	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 79	641.220	6232.063	0.8	0.2	1.3	3.7	0.7	0.02
Unknown Building 80	641.784	6232.059	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 81	641.219	6232.071	0.8	0.2	1.3	3.7	0.7	0.02
Unknown Building 82	641.751	6232.050	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 83	641.219	6232.085	0.8	0.2	1.3	3.7	0.7	0.02
Unknown Building 84	641.208	6232.134	0.9	0.2	1.2	3.7	0.7	0.02
Unknown Building 85	641.842	6232.556	0.8	0.2	1.1	3.2	0.7	0.02
Unknown Building 86	641.200	6232.134	0.9	0.2	1.2	3.7	0.7	0.02
Unknown Building 87	641.242	6232.144	0.9	0.2	1.2	3.6	0.7	0.02
Unknown Building 88	641.273	6232.106	0.8	0.2	1.2	3.7	0.7	0.02
Unknown Building 89	641.267	6232.081	0.8	0.2	1.3	3.7	0.7	0.02
Unknown Building 90	641.350	6232.123	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 91	641.913	6232.471	0.8	0.2	1.1	3.3	0.7	0.02
Unknown Building 92	641.360	6232.149	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 93	641.339	6232.148	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 94	641.334	6232.133	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 95	641.329	6232.136	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 96	641.319	6232.130	0.8	0.2	1.2	3.6	0.7	0.02
Unknown Building 97	641.716	6232.361	0.8	0.2	1.2	3.4	0.7	0.02
Unknown Building 98	641.726	6232.330	0.8	0.2	1.2	3.4	0.7	0.02
Unknown Building 99	642.420	6232.706	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 100	641.719	6232.315	0.8	0.2	1.2	3.4	0.7	0.02
Unknown Building 101	642.414	6232.697	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 102	641.708	6232.314	0.8	0.2	1.2	3.5	0.7	0.02
Unknown Building 103	641.729	6229.020	0.9	0.2	1.2	3.5	0.7	0.02

	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 104	641.715	6229.015	0.9	0.2	1.2	3.5	0.7	0.02
Unknown Building 105	641.684	6229.037	0.9	0.2	1.2	3.5	0.7	0.02
Unknown Building 106	641.664	6229.052	0.9	0.2	1.2	3.5	0.7	0.02
Unknown Building 107	641.684	6229.050	0.9	0.2	1.2	3.5	0.7	0.02
Unknown Building 108	641.698	6229.109	0.9	0.2	1.2	3.4	0.7	0.02
Unknown Building 109	641.689	6228.896	0.9	0.2	1.2	3.5	0.7	0.02
Unknown Building 110	641.669	6228.915	0.9	0.2	1.2	3.5	0.7	0.02
Unknown Building 111	641.657	6228.840	0.9	0.2	1.2	3.5	0.7	0.02
Unknown Building 112	641.665	6228.834	0.9	0.2	1.2	3.5	0.7	0.02
Unknown Building 113	644.398	6226.367	0.7	0.1	1.3	3.4	0.4	0.01
Unknown Building 114	643.881	6226.485	0.7	0.1	1.3	3.6	0.5	0.02
Unknown Building 115	644.029	6226.070	0.7	0.1	1.4	3.8	0.5	0.01
Unknown Building 116	644.017	6226.086	0.7	0.1	1.4	3.8	0.5	0.01
Unknown Building 117	642.838	6226.416	0.9	0.2	1.4	4.1	0.6	0.02
Unknown Building 118	642.945	6226.433	0.8	0.2	1.4	4.0	0.6	0.02
Unknown Building 119	642.936	6226.428	0.8	0.2	1.4	4.0	0.6	0.02
Unknown Building 120	642.888	6226.854	0.8	0.2	1.4	3.8	0.6	0.02
Unknown Building 121	642.854	6226.949	0.8	0.2	1.4	3.8	0.6	0.02
Unknown Building 122	643.847	6226.177	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 123	643.840	6226.157	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 124	643.865	6226.164	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 125	643.882	6226.134	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 126	643.897	6226.107	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 127	643.902	6226.101	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 128	643.599	6226.038	0.8	0.2	1.5	4.1	0.5	0.02
Unknown Building 129	643.616	6226.337	0.7	0.1	1.3	3.8	0.5	0.02
Unknown Building 130	643.663	6226.211	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 131	643.697	6226.185	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 132	643.719	6226.149	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 133	643.736	6226.142	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 134	643.744	6226.087	0.7	0.1	1.4	4.0	0.5	0.02
Unknown Building 135	643.748	6226.078	0.7	0.1	1.4	4.0	0.5	0.02
Unknown Building 136	643.753	6226.063	0.7	0.1	1.4	4.0	0.5	0.02
Unknown Building 137	641.735	6229.039	0.9	0.2	1.2	3.5	0.7	0.02
Unknown Building 138	643.909	6226.161	0.7	0.1	1.4	3.8	0.5	0.02
Unknown Building 139	643.834	6226.210	0.7	0.1	1.4	3.8	0.5	0.02
Unknown Building 140	643.384	6226.373	0.8	0.2	1.4	3.9	0.5	0.02
Unknown Building 140	643.418	6226.364	0.8	0.2	1.4	3.9	0.5	0.02
Unknown Building 142	642.743	6226.973	0.8	0.2	1.4	3.8	0.6	0.02
Unknown Building 142	642.768	6226.982	0.8	0.2	1.4	3.8	0.6	0.02
Unknown Building 144	642.672	6226.501	0.9	0.2	1.4	4.1	0.6	0.02
Unknown Building 145	642.676	6226.447	0.9	0.2	1.4	4.1	0.6	0.02
Unknown Building 145	643.764	6226.139	0.9	0.2	1.4	3.9	0.5	0.02
Unknown Building 147	643.755	6226.147	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 147	643.768	6226.152	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 149	643.779	6226.166	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 150	643.757	6226.160	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 150	643.771	6226.180	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 151	643.753	6226.180	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 152	643.720	6226.203	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 155	643.744	6226.210	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 154			0.7	-	1.4			
<u> </u>	643.832	6226.175	1	0.1		3.9	0.5	0.02
Unknown Building 156	643.172	6226.037	0.8	0.2	1.5	4.3	0.5	0.02

	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 157	643.203	6225.978	0.8	0.2	1.6	4.4	0.5	0.02
Unknown Building 158	643.484	6226.166	0.8	0.1	1.4	4.0	0.5	0.02
Unknown Building 159	643.367	6226.160	0.8	0.2	1.5	4.1	0.5	0.02
Unknown Building 160	643.528	6226.061	0.8	0.1	1.5	4.1	0.5	0.02
Unknown Building 161	643.545	6226.046	0.8	0.2	1.5	4.1	0.5	0.02
Unknown Building 162	643.536	6226.004	0.8	0.1	1.5	4.2	0.5	0.02
Unknown Building 163	643.472	6226.157	0.8	0.1	1.4	4.1	0.5	0.02
Unknown Building 164	643.587	6226.050	0.8	0.1	1.5	4.1	0.5	0.02
Unknown Building 165	643.185	6226.306	0.8	0.2	1.4	4.0	0.5	0.02
Unknown Building 166	643.027	6226.363	0.8	0.2	1.4	4.1	0.6	0.02
Unknown Building 167	641.436	6228.659	0.9	0.2	1.3	3.7	0.7	0.02
Unknown Building 168	642.961	6226.254	0.8	0.2	1.5	4.2	0.6	0.02
Unknown Building 169	644.004	6226.153	0.7	0.1	1.3	3.8	0.5	0.01
Unknown Building 170	643.970	6226.198	0.7	0.1	1.3	3.8	0.5	0.02
Unknown Building 171	643.973	6226.201	0.7	0.1	1.3	3.8	0.5	0.02
Unknown Building 172	643.968	6226.204	0.7	0.1	1.3	3.8	0.5	0.02
Unknown Building 173	643.956	6226.214	0.7	0.1	1.3	3.8	0.5	0.02
Unknown Building 174	641.724	6227.960	0.9	0.2	1.3	3.9	0.7	0.02
Unknown Building 175	641.741	6227.953	0.9	0.2	1.3	3.9	0.7	0.02
Unknown Building 176	641.677	6228.058	0.9	0.2	1.3	3.9	0.7	0.02
Unknown Building 177	641.672	6228.099	0.9	0.2	1.3	3.8	0.7	0.02
Unknown Building 178	641.666	6228.095	0.9	0.2	1.3	3.9	0.7	0.02
Unknown Building 179	643.902	6226.128	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 180	643.908	6226.118	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 181	643.914	6226.110	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 182	643.882	6226.168	0.7	0.1	1.4	3.8	0.5	0.02
Unknown Building 183	643.875	6226.180	0.7	0.1	1.4	3.8	0.5	0.02
Unknown Building 184	639.183	6227.195	1.2	0.3	1.9	5.8	0.9	0.02
Unknown Building 185	639.162	6227.197	1.3	0.3	1.9	5.8	0.9	0.03
Unknown Building 186	638.997	6227.336	1.3	0.3	2.0	6.0	0.9	0.03
Unknown Building 187	639.202	6227.203	1.2	0.3	1.9	5.8	0.9	0.03
Unknown Building 188	643.875	6226.185	0.7	0.1	1.4	3.8	0.5	0.02
Unknown Building 189	643.868	6226.221	0.7	0.1	1.3	3.8	0.5	0.02
Unknown Building 190	643.761	6226.051	0.7	0.1	1.4	4.0	0.5	0.02
Unknown Building 191	643.782	6226.058	0.7	0.1	1.4	4.0	0.5	0.02
Unknown Building 192	643.814	6226.081	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 193	643.801	6226.090	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 194	643.797	6226.103	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 195	643.794	6226.117	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 196	643.793	6226.138	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 197	643.767	6226.128	0.7	0.1	1.4	3.9	0.5	0.02
Unknown Building 198	643.268	6226.302	0.8	0.2	1.4	4.0	0.5	0.02
Unknown Building 199	643.292	6226.276	0.8	0.2	1.4	4.0	0.5	0.02
Unknown Building 200	643.216	6226.347	0.8	0.2	1.4	4.0	0.5	0.02
Unknown Building 200	643.224	6226.078	0.8	0.2	1.5	4.3	0.5	0.02
Unknown Building 202	643.256	6226.097	0.8	0.2	1.5	4.2	0.5	0.02
Unknown Building 202	643.288	6226.117	0.8	0.2	1.5	4.2	0.5	0.02
Unknown Building 203	643.339	6226.147	0.8	0.2	1.5	4.1	0.5	0.02
Unknown Building 205	643.303	6226.155	0.8	0.2	1.5	4.1	0.5	0.02
Unknown Building 200	622.081	6236.050	0.4	0.2	0.6	1.9	0.1	0.006
Unknown Building 200	622.088	6235.938	0.4	0.06	0.0	1.9	0.1	0.007
Unknown Building 207	622.090	6235.975	0.4	0.06	0.7	1.9	0.1	0.007
	1022.000	10200.010	U.T	10.00	10.1	1.3	10.1	10.007

	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 210	622.223	6235.981	0.4	0.06	0.7	2.0	0.1	0.007
Unknown Building 211	622.240	6235.939	0.4	0.06	0.7	2.0	0.1	0.007
Unknown Building 212	643.342	6232.985	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 213	642.375	6232.724	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 214	642.401	6232.723	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 215	643.329	6233.006	0.7	0.2	1.0	3.1	0.6	0.02
Unknown Building 216	642.416	6232.748	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 217	643.334	6233.011	0.7	0.2	1.0	3.1	0.6	0.02
Unknown Building 218	642.409	6232.755	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 219	643.338	6233.028	0.7	0.2	1.0	3.1	0.6	0.02
Unknown Building 220	642.398	6232.749	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 221	643.335	6233.152	0.7	0.2	1.0	3.0	0.6	0.02
Unknown Building 222	642.392	6232.749	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 223	643.308	6233.164	0.7	0.2	1.0	3.0	0.6	0.02
Unknown Building 224	642.368	6232.771	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 225	643.304	6233.215	0.7	0.2	1.0	3.0	0.6	0.02
Unknown Building 226	642.409	6232.760	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 227	643.336	6233.207	0.7	0.2	1.0	3.0	0.6	0.02
Unknown Building 228	643.314	6233.263	0.7	0.2	1.0	3.0	0.6	0.02
Unknown Building 229	626.029	6235.450	0.8	0.2	1.3	3.6	0.3	0.02
Unknown Building 230	643.303	6233.282	0.7	0.1	1.0	2.9	0.6	0.02
Unknown Building 231	643.334	6233.306	0.7	0.2	1.0	2.9	0.6	0.02
Unknown Building 232	643.313	6233.331	0.7	0.2	1.0	2.9	0.6	0.02
Unknown Building 233	643.300	6233.326	0.7	0.2	1.0	2.9	0.6	0.02
Unknown Building 233	643.203	6233.002	0.7	0.2	1.0	3.1	0.6	0.02
Unknown Building 235	643.196	6232.991	0.7	0.2	1.0	3.1	0.6	0.02
Unknown Building 236	643.246	6232.984	0.7	0.2	1.0	3.1	0.6	0.02
Unknown Building 237	643.191	6232.960	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 238	643.239	6232.950	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 239	643.231	6232.911	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 240	646.432	6233.677	0.5	0.1	0.7	2.1	0.4	0.02
Unknown Building 241	646.501	6233.734	0.5	0.1	0.7	2.1	0.4	0.01
Unknown Building 242	626.927	6234.611	1.1	0.1	1.8	5.1	0.3	0.01
Unknown Building 243	643.244	6232.893	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 244	643.200	6232.869	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 245	646.378	6233.687	0.5	0.2	0.7	2.1	0.0	0.02
Unknown Building 246	643.189	6232.851	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 247	646.378	6233.691	0.5	0.1	0.74	2.1	0.4	0.02
Unknown Building 248			0.3	0.1	1.1	3.1	0.4	0.01
Unknown Building 248	643.204 646.354	6232.854 6233.688	0.7	0.2	0.7	2.2	0.6	0.02
Unknown Building 250	643.219	6232.853	0.5	0.1	1.1	3.1	0.4	0.01
Unknown Building 250	646.357	6233.709	0.7	0.2	0.7	2.1	0.8	0.02
Unknown Building 252	643.238	6232.844	0.7	0.1	1.1	3.1	0.4	0.02
Unknown Building 253	643.016	6232.721	0.7	0.2	1.1	3.2	0.6	0.02
Unknown Building 254			0.7	0.2				
Unknown Building 255	643.326 643.315	6232.944 6232.981	0.7	0.2	1.1	3.1 3.1	0.6	0.02
Unknown Building 255	642.409	6232.764	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 257			0.7	0.2	1.1	3.1	0.6	0.02
	642.409	6232.768						
Unknown Building 258	642.434	6232.773	0.7	0.2	1.1	3.1	0.6	0.02
Unknown Building 259	642.331	6232.741	0.8	0.2	1.1	3.1	0.6	0.02
Unknown Building 260	642.316	6232.728	0.8	0.2	1.1	3.1	0.6	0.02
Unknown Building 261	642.298	6232.715	0.8	0.2	1.1	3.1	0.6	0.02
Unknown Building 262	642.963	6232.725	0.7	0.2	1.1	3.2	0.6	0.02

Receptor ID	UTM Easting (km)	UTM Northing (km)	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
			24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 263	621.923	6235.219	0.5	0.07	0.7	2.1	0.2	0.007
Unknown Building 264	621.936	6235.188	0.5	0.07	0.7	2.1	0.2	0.007
Unknown Building 265	621.979	6235.185	0.5	0.07	0.7	2.2	0.2	0.007
Unknown Building 266	625.563	6235.174	0.9	0.1	1.4	3.9	0.3	0.01
Unknown Building 267	625.767	6235.142	0.9	0.1	1.4	4.0	0.3	0.01
Unknown Building 268	627.442	6234.203	1.3	0.2	2.1	5.9	0.5	0.02
Unknown Building 269	626.401	6234.964	1.0	0.2	1.5	4.4	0.3	0.02
Unknown Building 270	626.381	6234.964	1.0	0.1	1.5	4.4	0.3	0.02
Unknown Building 271	626.452	6235.114	0.9	0.1	1.4	4.2	0.3	0.01
Unknown Building 272	626.453	6235.109	0.9	0.1	1.4	4.2	0.3	0.01
Unknown Building 273	626.630	6235.208	0.9	0.1	1.4	4.0	0.3	0.01
Unknown Building 274	626.467	6235.141	0.9	0.1	1.4	4.1	0.3	0.01
Unknown Building 275	626.461	6235.127	0.9	0.1	1.4	4.1	0.3	0.01
Unknown Building 276	626.495	6235.173	0.9	0.1	1.4	4.1	0.3	0.01
Unknown Building 277	626.425	6235.038	0.9	0.1	1.5	4.3	0.3	0.01
Unknown Building 278	621.996	6237.816	0.3	0.04	0.5	1.4	0.08	0.005
Unknown Building 279	622.012	6237.737	0.3	0.04	0.5	1.4	0.09	0.005
Unknown Building 280	622.051	6237.728	0.3	0.04	0.5	1.4	0.09	0.005
Unknown Building 281	622.041	6237.751	0.3	0.04	0.5	1.4	0.09	0.005
Unknown Building 282	622.038	6237.770	0.3	0.04	0.5	1.4	0.09	0.005
Unknown Building 283	622.001	6237.816	0.3	0.04	0.5	1.4	0.08	0.005
Unknown Building 284	622.656	6235.987	0.5	0.07	0.7	2.1	0.2	0.008
Unknown Building 285	625.996	6235.432	0.8	0.1	1.3	3.7	0.3	0.01
Unknown Building 286	625.963	6235.416	0.8	0.1	1.3	3.7	0.3	0.01
Unknown Building 287	625.953	6235.405	0.8	0.1	1.3	3.7	0.3	0.01

(a) 24-hour average based on worst-case 30-day period; units in mg/dm²-d.

Receptor ID	UTM Easting (km)	UTM Northing (km)	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
			24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 1	644.950	6225.018	16	5.1	27	30	5.8	0.8
Unknown Building 2	644.872	6225.507	16	5.1	27	30	5.8	0.8
Unknown Building 3	644.880	6225.504	16	5.1	27	30	5.8	0.8
Unknown Building 4	644.952	6225.002	16	5.1	27	30	5.8	0.8
Unknown Building 5	644.955	6224.971	16	5.1	27	30	5.8	0.8
Unknown Building 6	644.947	6224.943	16	5.1	27	30	5.8	0.8
Unknown Building 7	644.947	6224.925	16	5.1	27	30	5.8	0.8
Unknown Building 8	644.963	6224.933	16	5.1	27	30	5.8	0.8
Unknown Building 9	644.882	6225.060	16	5.1	27	30	5.8	0.8
Unknown Building 10	643.566	6225.463	16	5.1	28	31	5.9	0.8
<u>v</u>		6225.463	-	5.1	28	31		
Unknown Building 11	643.559		16	5.1 5.1		31	5.9	0.8
Unknown Building 12	643.374	6225.135	16		28		5.9	0.8
Unknown Building 13	643.404	6225.133	16	5.1	28	31	5.9	0.8
Unknown Building 14	643.403	6225.138	16	5.1	28	31	5.9	0.8
Unknown Building 15	643.969	6223.120	15	5.1	27	28	5.7	0.8
Unknown Building 16	643.834	6224.638	16	5.1	28	30	5.8	0.8
Unknown Building 17	643.831	6224.618	16	5.1	28	30	5.8	0.8
Unknown Building 18	644.950	6225.063	16	5.1	27	30	5.8	0.8
Unknown Building 19	644.943	6225.062	16	5.1	27	30	5.8	0.8
Unknown Building 20	644.951	6225.052	16	5.1	27	30	5.8	0.8
Unknown Building 21	644.953	6225.057	16	5.1	27	30	5.8	0.8
Unknown Building 22	644.933	6225.059	16	5.1	27	30	5.8	0.8
Unknown Building 23	644.990	6224.918	16	5.1	27	30	5.8	0.8
Unknown Building 24	644.990	6224.939	16	5.1	27	30	5.8	0.8
Unknown Building 25	644.873	6225.014	16	5.1	27	30	5.8	0.8
Unknown Building 26	644.713	6224.856	16	5.1	27	30	5.8	0.8
Unknown Building 27	644.760	6224.826	16	5.1	27	30	5.8	0.8
Unknown Building 28	644.816	6224.832	16	5.1	27	30	5.8	0.8
Unknown Building 29	644.815	6224.853	16	5.1	27	30	5.8	0.8
Unknown Building 30	644.843	6224.892	16	5.1	27	30	5.8	0.8
Unknown Building 31	644.871	6224.825	16	5.1	27	30	5.8	0.8
Unknown Building 32	644.906	6224.940	16	5.1	27	30	5.8	0.8
Unknown Building 33	644.867	6224.969	16	5.1	27	30	5.8	0.8
Unknown Building 34	643.667	6225.359	16	5.1	28	31	5.9	0.8
Unknown Building 35	643.773	6225.267	16	5.1	28	30	5.9	0.8
Unknown Building 36	643.797	6225.227	16	5.1	28	30	5.9	0.8
Unknown Building 37	643.806	6225.168	16	5.1	28	30	5.9	0.8
Unknown Building 38	643.808	6225.162	16	5.1	28	30	5.9	0.8
Unknown Building 39	643.766	6225.177	16	5.1	28	30	5.9	0.8
Unknown Building 40	643.683	6225.204	16	5.1	28	30	5.9	0.8
Unknown Building 41	643.681	6225.221	16	5.1	28	30	5.9	0.8
Unknown Building 42	643.634	6225.271	16	5.1	28	31	5.9	0.8
Unknown Building 42				5.1	28	31	5.9	
Unknown Building 43	643.633	6225.252	16	-	20	-	5.9	0.8
	643.894	6223.384	16	5.1		29		0.8
Unknown Building 45	643.856	6223.461	16	5.1	27	29	5.7	0.8
Unknown Building 46	644.033	6223.096	15	5.1	27	28	5.7	0.8
Unknown Building 47	644.849	6225.100	16	5.1	27	30	5.8	0.8
Unknown Building 48	644.708	6225.309	16	5.1	28	30	5.8	0.8
Unknown Building 49	644.412	6224.131	16	5.1	27	29	5.7	0.8
Unknown Building 50	644.406	6224.149	16	5.1	27	29	5.7	0.8

Table G.6 Maximum predicted concentrations of particulate matter with background at unknown buildings (in μ g/m³)

Receptor ID	UTM Easting (km)	UTM Northing (km)	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
			24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 51	643.639	6225.491	16	5.1	28	31	5.9	0.8
Unknown Building 52	643.623	6225.483	16	5.1	28	31	5.9	0.8
Unknown Building 53	643.691	6225.415	16	5.1	28	31	5.9	0.8
Unknown Building 54	643.709	6225.375	16	5.1	28	30	5.9	0.8
Unknown Building 55	643.700	6225.363	16	5.1	28	31	5.9	0.8
Unknown Building 56	643.664	6225.368	16	5.1	28	31	5.9	0.8
Unknown Building 57	642.358	6232.697	16	5.2	27	29	6.0	0.8
Unknown Building 58	642.370	6232.697	16	5.2	27	29	6.0	0.8
Unknown Building 59	641.707	6232.306	16	5.2	27	30	6.1	0.8
Unknown Building 60	641.716	6232.294	16	5.2	27	30	6.1	0.8
Unknown Building 61	639.639	6231.988	16	5.3	28	30	6.3	0.8
Unknown Building 62	639.669	6231.968	16	5.3	28	30	6.3	0.8
Unknown Building 63	641.692	6232.162	16	5.2	27	30	6.1	0.8
Unknown Building 64	639.724	6231.971	16	5.3	28	30	6.3	0.8
Unknown Building 65	641.692	6232.158	16	5.2	27	30	6.1	0.8
Unknown Building 66	642.008	6232.583	16	5.2	27	29	6.0	0.8
Unknown Building 67	639.730	6231.945	16	5.3	28	30	6.3	0.8
Unknown Building 68	641.731	6232.165	16	5.2	27	30	6.1	0.8
Unknown Building 69	641.983	6232.575	16	5.2	27	29	6.0	0.8
Unknown Building 70	639.694	6231.927	16.0	5.3	28	30	6.3	0.8
Unknown Building 71	641.719	6232.146	16	5.2	27	30	6.1	0.8
Unknown Building 72	641.977	6232.585	16	5.2	27	29	6.0	0.8
Unknown Building 73	641.745	6232.141	16	5.2	27	30	6.1	0.8
Unknown Building 74	641.764	6232.131	16	5.2	27	30	6.1	0.8
Unknown Building 75	641.939	6232.450	16	5.2	27	30	6.0	0.8
Unknown Building 76	641.800	6232.154	16	5.2	27	30	6.1	0.8
Unknown Building 77	641.817	6232.160	16	5.2	27	30	6.1	0.8
Unknown Building 78	641.827	6232.134	16	5.2	27	30	6.1	0.8
Unknown Building 79	641.220	6232.063	16	5.2	27	30	6.1	0.8
Unknown Building 80	641.784	6232.059	16	5.2	27	30	6.1	0.8
Unknown Building 81	641.219	6232.071	16	5.2	27	30	6.1	0.8
Unknown Building 82	641.751	6232.050	16	5.2	27	30	6.1	0.8
Unknown Building 83	641.219	6232.085	16	5.2	27	30	6.1	0.8
Unknown Building 84	641.208	6232.134	16	5.2	27	30	6.1	0.8
Unknown Building 85	641.842	6232.556	16	5.2	27	29	6.1	0.8
Unknown Building 86	641.200	6232.134	16	5.2	27	30	6.1	0.8
Unknown Building 87	641.242	6232.144	16	5.2	27	30	6.1	0.8
Unknown Building 88	641.273	6232.106	16	5.2	27	30	6.1	0.8
Unknown Building 89	641.267	6232.081	16	5.2	27	30	6.1	0.8
Unknown Building 90	641.350	6232.123	16	5.2	27	30	6.1	0.8
Unknown Building 91	641.913	6232.471	16	5.2	27	30	6.0	0.8
Unknown Building 92	641.360	6232.149	16	5.2 5.2	27	30	6.1	0.8
Unknown Building 93	641.339	6232.149	16	5.2 5.2	27	30	6.1	0.8
Unknown Building 93	641.334	6232.148	16	5.2 5.2	27	30	6.1	0.8
Unknown Building 95	641.329	6232.133	16	5.2 5.2	27	30	6.1	0.8
Unknown Building 95			16	5.2 5.2	27	30	-	
Unknown Building 97	641.319 641.716	6232.130 6232.361	16	5.2 5.2	27	30	6.1 6.1	0.8
-	1		16	5.2 5.2	27	30		0.8
Unknown Building 98 Unknown Building 99	641.726	6232.330		5.2 5.2		29	6.1	
	642.420	6232.706	16	5.2 5.2	27		6.0	0.8
Unknown Building 100	641.719	6232.315	16		27	30	6.1	0.8
Unknown Building 101	642.414	6232.697	16	5.2	27	29	6.0	0.8
Unknown Building 102	641.708	6232.314	16	5.2	27	30	6.1	0.8
Unknown Building 103	641.729	6229.020	16	5.2	27	30	6.1	0.8

	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 104	641.715	6229.015	16	5.2	27	30	6.1	0.8
Unknown Building 105	641.684	6229.037	16	5.2	27	30	6.1	0.8
Unknown Building 106	641.664	6229.052	16	5.2	27	30	6.1	0.8
Unknown Building 107	641.684	6229.050	16	5.2	27	30	6.1	0.8
Unknown Building 108	641.698	6229.109	16	5.2	27	30	6.1	0.8
Unknown Building 109	641.689	6228.896	16	5.2	27	30	6.1	0.8
Unknown Building 110	641.669	6228.915	16	5.2	27	30	6.1	0.8
Unknown Building 111	641.657	6228.840	16	5.2	27	30	6.1	0.8
Unknown Building 112	641.665	6228.834	16	5.2	27	30	6.1	0.8
Unknown Building 113	644.398	6226.367	16	5.1	27	30	5.8	0.8
Unknown Building 114	643.881	6226.485	16	5.1	28	30	5.9	0.8
Unknown Building 115	644.029	6226.070	16	5.1	28	30	5.9	0.8
Unknown Building 116	644.017	6226.086	16	5.1	28	30	5.9	0.8
Unknown Building 117	642.838	6226.416	16	5.2	28	30	6.0	0.8
Unknown Building 118	642.945	6226.433	16	5.2	28	30	6.0	0.8
Unknown Building 119	642.936	6226.428	16	5.2	28	30	6.0	0.8
Unknown Building 120	642.888	6226.854	16	5.2	28	30	6.0	0.8
Unknown Building 121	642.854	6226.949	16	5.2	28	30	6.0	0.8
Unknown Building 122	643.847	6226.177	16	5.1	28	30	5.9	0.8
Unknown Building 123	643.840	6226.157	16	5.1	28	30	5.9	0.8
Unknown Building 124	643.865	6226.164	16	5.1	28	30	5.9	0.8
Unknown Building 125	643.882	6226.134	16	5.1	28	30	5.9	0.8
Unknown Building 126	643.897	6226.107	16	5.1	28	30	5.9	0.8
Unknown Building 127	643.902	6226.101	16	5.1	28	30	5.9	0.8
Unknown Building 128	643.599	6226.038	16	5.1	28	30	5.9	0.8
Unknown Building 129	643.616	6226.337	16	5.1	28	30	5.9	0.8
Unknown Building 130	643.663	6226.211	16	5.1	28	30	5.9	0.8
Unknown Building 131	643.697	6226.185	16	5.1	28	30	5.9	0.8
Unknown Building 132	643.719	6226.149	16	5.1	28	30	5.9	0.8
Unknown Building 133	643.736	6226.142	16	5.1	28	30	5.9	0.8
Unknown Building 134	643.744	6226.087	16	5.1	28	30	5.9	0.8
Unknown Building 135	643.748	6226.078	16	5.1	28	30	5.9	0.8
Unknown Building 136	643.753	6226.063	16	5.1	28	30	5.9	0.8
Unknown Building 137	641.735	6229.039	16	5.2	27	30	6.1	0.8
Unknown Building 138	643.909	6226.161	16	5.1	28	30	5.9	0.8
Unknown Building 139	643.834	6226.210	16	5.1	28	30	5.9	0.8
Unknown Building 140	643.384	6226.373	16	5.1	28	30	5.9	0.8
Unknown Building 141	643.418	6226.364	16	5.1	28	30	5.9	0.8
Unknown Building 142	642.743	6226.973	16	5.2	28	30	6.0	0.8
Unknown Building 143	642.768	6226.982	16	5.2	28	30	6.0	0.8
Unknown Building 144	642.672	6226.501	16	5.2	28	30	6.0	0.8
Unknown Building 145	642.676	6226.447	16	5.2	28	30	6.0	0.8
Unknown Building 146	643.764	6226.139	16	5.1	28	30	5.9	0.8
Unknown Building 147	643.755	6226.147	16	5.1	28	30	5.9	0.8
Unknown Building 148	643.768	6226.152	16	5.1	28	30	5.9	0.8
Unknown Building 149	643.779	6226.166	16	5.1	28	30	5.9	0.8
Unknown Building 150	643.757	6226.160	16	5.1	28	30	5.9	0.8
Unknown Building 151	643.771	6226.180	16	5.1	28	30	5.9	0.8
Unknown Building 152	643.753	6226.187	16	5.1	28	30	5.9	0.8
Unknown Building 153	643.720	6226.203	16	5.1	28	30	5.9	0.8
Unknown Building 154	643.744	6226.210	16	5.1	28	30	5.9	0.8
Unknown Building 155	643.832	6226.175	16	5.1	28	30	5.9	0.8

	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 157	643.203	6225.978	16	5.1	28	31	5.9	0.8
Unknown Building 158	643.484	6226.166	16	5.1	28	30	5.9	0.8
Unknown Building 159	643.367	6226.160	16	5.1	28	30	5.9	0.8
Unknown Building 160	643.528	6226.061	16	5.1	28	30	5.9	0.8
Unknown Building 161	643.545	6226.046	16	5.1	28	30	5.9	0.8
Unknown Building 162	643.536	6226.004	16	5.1	28	30	5.9	0.8
Unknown Building 163	643.472	6226.157	16	5.1	28	30	5.9	0.8
Unknown Building 164	643.587	6226.050	16	5.1	28	30	5.9	0.8
Unknown Building 165	643.185	6226.306	16	5.2	28	30	5.9	0.8
Unknown Building 166	643.027	6226.363	16	5.2	28	30	6.0	0.8
Unknown Building 167	641.436	6228.659	16	5.2	27	30	6.1	0.8
Unknown Building 168	642.961	6226.254	16	5.2	28	30	6.0	0.8
Unknown Building 169	644.004	6226.153	16	5.1	28	30	5.9	0.8
Unknown Building 170	643.970	6226.198	16	5.1	28	30	5.9	0.8
Unknown Building 171	643.973	6226.201	16	5.1	28	30	5.9	0.8
Unknown Building 172	643.968	6226.204	16	5.1	28	30	5.9	0.8
Unknown Building 173	643.956	6226.214	16	5.1	28	30	5.9	0.8
Unknown Building 174	641.724	6227.960	16	5.2	28	30	6.1	0.8
Unknown Building 175	641.741	6227.953	16	5.2	28	30	6.1	0.8
Unknown Building 176	641.677	6228.058	16	5.2	28	30	6.1	0.8
Unknown Building 177	641.672	6228.099	16	5.2	28	30	6.1	0.8
Unknown Building 178	641.666	6228.095	16	5.2	28	30	6.1	0.8
Unknown Building 179	643.902	6226.128	16	5.1	28	30	5.9	0.8
Unknown Building 180	643.908	6226.118	16	5.1	28	30	5.9	0.8
Unknown Building 181	643.914	6226.110	16	5.1	28	30	5.9	0.8
Unknown Building 182	643.882	6226.168	16	5.1	28	30	5.9	0.8
Unknown Building 183	643.875	6226.180	16	5.1	28	30	5.9	0.8
Unknown Building 184	639.183	6227.195	16	5.3	28	32	6.3	0.8
Unknown Building 185	639.162	6227.197	16	5.3	28	32	6.3	0.8
Unknown Building 186	638.997	6227.336	16	5.3	28	32	6.3	0.8
Unknown Building 187	639.202	6227.203	16	5.3	28	32	6.3	0.8
Unknown Building 188	643.875	6226.185	16	5.1	28	30	5.9	0.8
Unknown Building 189	643.868	6226.221	16	5.1	28	30	5.9	0.8
Unknown Building 199	643.761	6226.051	16	5.1	28	30	5.9	0.8
Unknown Building 191	643.782	6226.058	16	5.1	28	30	5.9	0.8
Unknown Building 192	643.814	6226.081	16	5.1	28	30	5.9	0.8
Unknown Building 192	643.801	6226.090	16	5.1	28	30	5.9	0.8
Unknown Building 194	643.797	6226.103	16	5.1	28	30	5.9	0.8
Unknown Building 195	643.794	6226.117	16	5.1	28	30	5.9	0.8
Unknown Building 195	643.793	6226.138	16	5.1	28	30	5.9	0.8
Unknown Building 197	643.767	6226.128	16	5.1	28	30	5.9	0.8
Unknown Building 198			16	5.1	28	30	5.9	0.8
Unknown Building 198	643.268 643.292	6226.302 6226.276	16	5.1	28	30	5.9	0.8
Unknown Building 200	643.292	6226.347	16	5.1	28	30	5.9	0.8
Unknown Building 200	1		16	5.2 5.1	28	30	5.9	
Unknown Building 201	643.224 643.256	6226.078 6226.097	16	5.1	28	30	5.9	0.8
Unknown Building 202	643.288	6226.097	16	5.1	28	30	5.9	0.8
Unknown Building 203			16	5.1	28	30	5.9	0.8
Unknown Building 204	643.339	6226.147	-					
	643.303	6226.155	16	5.1 5.1	28	30	5.9	0.8
Unknown Building 206	622.081	6236.050	15		27	28	5.5	0.8
Unknown Building 207	622.088	6235.938	15	5.1	27	28	5.5	0.8
Unknown Building 208	622.090	6235.975	15	5.1	27	28	5.5	0.8
Unknown Building 209	621.912	6235.742	15	5.1	27	28	5.5	0.8

Recentor III	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 210	622.223	6235.981	15	5.1	27	28	5.5	0.8
Unknown Building 211	622.240	6235.939	15	5.1	27	28	5.5	0.8
Unknown Building 212	643.342	6232.985	16	5.2	27	29	6.0	0.8
Unknown Building 213	642.375	6232.724	16	5.2	27	29	6.0	0.8
Unknown Building 214	642.401	6232.723	16	5.2	27	29	6.0	0.8
Unknown Building 215	643.329	6233.006	16	5.2	27	29	6.0	0.8
Unknown Building 216	642.416	6232.748	16	5.2	27	29	6.0	0.8
Unknown Building 217	643.334	6233.011	16	5.2	27	29	6.0	0.8
Unknown Building 218	642.409	6232.755	16	5.2	27	29	6.0	0.8
Unknown Building 219	643.338	6233.028	16	5.2	27	29	6.0	0.8
Unknown Building 220	642.398	6232.749	16	5.2	27	29	6.0	0.8
Unknown Building 221	643.335	6233.152	16	5.2	27	29	6.0	0.8
Unknown Building 222	642.392	6232.749	16	5.2	27	29	6.0	0.8
Unknown Building 223	643.308	6233.164	16	5.2	27	29	6.0	0.8
Unknown Building 224	642.368	6232.771	16	5.2	27	29	6.0	0.8
Unknown Building 225	643.304	6233.215	16	5.2	27	29	6.0	0.8
Unknown Building 226	642.409	6232.760	16	5.2	27	29	6.0	0.8
Unknown Building 227	643.336	6233.207	16	5.2	27	29	6.0	0.8
Unknown Building 228	643.314	6233.263	16	5.2	27	29	6.0	0.8
Unknown Building 229	626.029	6235.450	16	5.1	27	30	5.7	0.8
Unknown Building 230	643.303	6233.282	16	5.2	27	29	6.0	0.8
Unknown Building 231	643.334	6233.306	16	5.2	27	29	6.0	0.8
Unknown Building 232	643.313	6233.331	16	5.2	27	29	6.0	0.8
Unknown Building 233	643.300	6233.326	16	5.2	27	29	6.0	0.8
Unknown Building 234	643.203	6233.002	16	5.2	27	29	6.0	0.8
Unknown Building 235	643.196	6232.991	16	5.2	27	29	6.0	0.8
Unknown Building 236	643.246	6232.984	16	5.2	27	29	6.0	0.8
Unknown Building 237	643.191	6232.960	16	5.2	27	29	6.0	0.8
Unknown Building 238	643.239	6232.950	16	5.2	27	29	6.0	0.8
Unknown Building 239	643.231	6232.911	16	5.2	27	29	6.0	0.8
Unknown Building 240	646.432	6233.677	15	5.1	27	28	5.7	0.8
Unknown Building 240	646.501	6233.734	15	5.1	27	28	5.7	0.8
Unknown Building 242	626.927	6234.611	16	5.2	28	31	5.8	0.8
Unknown Building 243	643.244	6232.893	16	5.2	27	29	6.0	0.8
Unknown Building 244	643.200	6232.869	16	5.2	27	29	6.0	0.8
Unknown Building 245	646.378	6233.687	15	5.1	27	28	5.8	0.8
Unknown Building 246	643.189	6232.851	16	5.2	27	29	6.0	0.8
Unknown Building 247	646.378	6233.691	15	5.1	27	28	5.8	0.8
Unknown Building 248	643.204	6232.854	16	5.2	27	20	6.0	0.8
Unknown Building 249	646.354	6233.688	15	5.1	27	29	5.8	0.8
Unknown Building 249	643.219	6232.853	16	5.2	27	20	6.0	0.8
Unknown Building 250	646.357	6233.709	15	5.2 5.1	27	29	5.8	0.8
Unknown Building 252	643.238	6232.844	16	5.2	27	20	6.0	0.8
Unknown Building 252	643.016	6232.721	16	5.2	27	29	6.0	0.8
Unknown Building 253	643.326	6232.944	16	5.2	27	29	6.0	0.8
Unknown Building 255	643.315		16	5.2	27	29	1	
Unknown Building 255	642.409	6232.981 6232.764	16	5.2 5.2	27	29	6.0 6.0	0.8
Unknown Building 257	642.409	6232.768	16	5.2	27	29	6.0	0.8
Unknown Building 257	642.409			5.2	27	29		
Unknown Building 258		6232.773	16 16	5.2 5.2	27	29 29	6.0 6.0	0.8
	642.331	6232.741						
Unknown Building 260	642.316	6232.728 6232.715	16 16	5.2 5.2	27 27	29 29	6.0 6.0	0.8
Unknown Building 261	642.298							

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Unknown Building 263	621.923	6235.219	15	5.1	27	28	5.6	0.8
Unknown Building 264	621.936	6235.188	15	5.1	27	28	5.6	0.8
Unknown Building 265	621.979	6235.185	15	5.1	27	28	5.6	0.8
Unknown Building 266	625.563	6235.174	16	5.1	28	30	5.7	0.8
Unknown Building 267	625.767	6235.142	16	5.1	28	30	5.7	0.8
Unknown Building 268	627.442	6234.203	16	5.2	28	32	5.9	0.8
Unknown Building 269	626.401	6234.964	16	5.1	28	31	5.7	0.8
Unknown Building 270	626.381	6234.964	16	5.1	28	31	5.7	0.8
Unknown Building 271	626.452	6235.114	16	5.1	28	30	5.7	0.8
Unknown Building 272	626.453	6235.109	16	5.1	28	30	5.7	0.8
Unknown Building 273	626.630	6235.208	16	5.1	28	30	5.7	0.8
Unknown Building 274	626.467	6235.141	16	5.1	28	30	5.7	0.8
Unknown Building 275	626.461	6235.127	16	5.1	28	30	5.7	0.8
Unknown Building 276	626.495	6235.173	16	5.1	28	30	5.7	0.8
Unknown Building 277	626.425	6235.038	16	5.1	28	30	5.7	0.8
Unknown Building 278	621.996	6237.816	15	5.0	27	28	5.5	0.8
Unknown Building 279	622.012	6237.737	15	5.0	27	28	5.5	0.8
Unknown Building 280	622.051	6237.728	15	5.0	27	28	5.5	0.8
Unknown Building 281	622.041	6237.751	15	5.0	27	28	5.5	0.8
Unknown Building 282	622.038	6237.770	15	5.0	27	28	5.5	0.8
Unknown Building 283	622.001	6237.816	15	5.0	27	28	5.5	0.8
Unknown Building 284	622.656	6235.987	15	5.1	27	28	5.6	0.8
Unknown Building 285	625.996	6235.432	16	5.1	27	30	5.7	0.8
Unknown Building 286	625.963	6235.416	16	5.1	27	30	5.7	0.8
Unknown Building 287	625.953	6235.405	16	5.1	27	30	5.7	0.8

NOTE:

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Aboriginal Education Center	633.609	6235.391	1.3	0.2	3.1	9.3	0.7	0.03
Alwin Holland	633.853	6236.278	1.1	0.2	2.3	6.8	0.5	0.02
Baldonnel Elementary	642.961	6232.724	0.7	0.2	1.1	3.2	0.6	0.02
Bert Ambrose Elementary	633.698	6237.244	0.8	0.1	1.3	3.9	0.3	0.01
Bert Bowes Middle School	632.695	6235.420	1.3	0.2	1.9	5.9	0.6	0.02
Board Office	633.204	6236.129	1.1	0.2	1.6	4.9	0.5	0.02
Charlie Lake Elementary	626.866	6238.375	0.6	0.1	0.8	2.7	0.2	0.01
CM Finch Elementary	632.665	6236.509	0.9	0.1	1.5	4.5	0.4	0.02
Dr. Kearney Middle School	634.341	6236.419	0.9	0.2	2.7	8.0	0.5	0.02
Duncan Cran Elementary	635.468	6234.477	1.5	0.3	2.8	8.2	1.3	0.04
Ecole Central Elementary	633.100	6235.426	1.4	0.2	2.2	6.4	0.6	0.03
Facilities & Transportation	632.721	6235.227	1.5	0.2	2.1	6.2	0.7	0.03
Key Learning Centre	632.856	6235.390	1.4	0.2	2.0	5.8	0.6	0.02
North Peace Secondary	634.926	6234.932	1.3	0.3	2.5	7.5	1.1	0.04
Energetic Learning Campus	634.926	6234.932	1.3	0.3	2.5	7.5	1.1	0.04
Northern BC Distance Education	632.856	6235.390	1.4	0.2	2.0	5.8	0.6	0.02
Open Learning	632.856	6235.390	1.4	0.2	2.0	5.8	0.6	0.02
Robert Ogilvie Elementary	635.074	6235.572	1.1	0.2	1.8	5.3	0.8	0.03
Student Support Services	633.204	6236.129	1.1	0.2	1.6	4.9	0.5	0.02
Taylor Elementary	643.346	6227.033	0.8	0.2	1.4	3.7	0.5	0.02
Technology Services	633.204	6236.129	1.1	0.2	1.6	4.9	0.5	0.02
Upper Halfway Elementary	633.204	6236.129	1.1	0.2	1.6	4.9	0.5	0.02
Wonowon Elementary	633.204	6236.129	1.1	0.2	1.6	4.9	0.5	0.02

Table G.7 Maximum predicted concentrations of particulate matter without background at schools (in $\mu g/m^3$)

NOTE:

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Aboriginal Education Center	633.609	6235.391	16	5.2	29	35	6.1	0.8
Alwin Holland	633.853	6236.278	16	5.2	28	33	5.9	0.8
Baldonnel Elementary	642.961	6232.724	16	5.2	27	29	6.0	0.8
Bert Ambrose Elementary	633.698	6237.244	16	5.1	28	30	5.7	0.8
Bert Bowes Middle School	632.695	6235.420	16	5.2	28	32	6.0	0.8
Board Office	633.204	6236.129	16	5.2	28	31	5.8	0.8
Charlie Lake Elementary	626.866	6238.375	16	5.1	27	29	5.6	0.8
CM Finch Elementary	632.665	6236.509	16	5.1	28	31	5.8	0.8
Dr. Kearney Middle School	634.341	6236.419	16	5.2	29	34	5.9	0.8
Duncan Cran Elementary	635.468	6234.477	16	5.3	29	34	6.7	0.8
Ecole Central Elementary	633.100	6235.426	16	5.2	28	33	6.0	0.8
Facilities & Transportation	632.721	6235.227	16	5.2	28	32	6.1	0.8
Key Learning Centre	632.856	6235.390	16	5.2	28	32	6.0	0.8
North Peace Secondary	634.926	6234.932	16	5.3	29	34	6.5	0.8
Energetic Learning Campus	634.926	6234.932	16	5.3	29	34	6.5	0.8
Northern BC Distance Education	632.856	6235.390	16	5.2	28	32	6.0	0.8
Open Learning	632.856	6235.390	16	5.2	28	32	6.0	0.8
Robert Ogilvie Elementary	635.074	6235.572	16	5.2	28	32	6.2	0.8
Student Support Services	633.204	6236.129	16	5.2	28	31	5.8	0.8
Taylor Elementary	643.346	6227.033	16	5.2	28	30	5.9	0.8
Technology Services	633.204	6236.129	16	5.2	28	31	5.8	0.8
Upper Halfway Elementary	633.204	6236.129	16	5.2	28	31	5.8	0.8
Wonowon Elementary	633.204	6236.129	16	5.2	28	31	5.8	0.8
NOTE:								

Table G.8 Maximum predicted concentrations of particulate matter with background at schools (in µg/m³)

December ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Chunkey Monkey	634.736	6235.411	1.3	0.23	2.0	6.0	0.8	0.03
Daycare								
Oscare Daycare/Oscare Tots	632.978	6235.501	1.3	0.21	2.0	5.7	0.6	0.02
The Zoo Daycare	634.054	6236.232	1.0	0.2	2.6	7.8	0.5	0.02
Little Kritters Daycare	624.101	6239.158	0.3	0.05	0.5	1.6	0.1	0.005
ABC & 123 Family Daycare	635.818	6234.246	1.4	0.3	3.0	8.9	1.4	0.0
Baby Bear Daycare	634.940	6234.929	1.3	0.3	2.5	7.5	1.1	0.04
Rascals	626.867	6238.356	0.6	0.08	0.8	2.8	0.2	0.01
Building Blocks Daycare	632.341	6235.672	1.2	0.2	1.8	5.4	0.5	0.02
Kidz Club	635.485	6234.438	1.5	0.3	2.9	8.4	1.3	0.04
Northern Lights College Daycare	632.978	6235.501	1.3	0.2	2.0	5.7	0.6	0.02
Little Bear Family Daycare	634.746	6235.411	1.3	0.2	2.0	5.9	0.8	0.03
Little Peanuts Family Daycare	636.173	6234.279	1.3	0.3	2.8	8.3	1.3	0.04
Little Pigs Family Daycare	633.130	6236.459	1.0	0.2	1.5	4.6	0.4	0.02
Nanny Norma's Daycare	633.845	6237.086	0.9	0.1	1.5	4.3	0.3	0.02
Pitter Patter Day Care	635.907	6234.821	1.3	0.3	2.5	7.2	1.1	0.04
Puddle Jumpers	633.845	6237.086	0.9	0.1	1.5	4.3	0.3	0.02
Seeds to Sow	634.341	6235.509	1.2	0.2	2.7	8.1	0.7	0.03
The Playground Family Daycare	635.666	6234.938	1.2	0.3	2.5	7.4	1.0	0.03
The Wiggles and Giggles Daycare	632.583	6235.781	1.2	0.2	1.8	5.3	0.5	0.02
TJ's Playhouse	634.310	6235.425	1.2	0.2	2.7	8.1	0.8	0.03
Tot's and Tikes Family Daycare	633.117	6236.197	1.0	0.2	1.6	4.8	0.4	0.02
The Stepping Stones Centre	635.815	6235.192	1.2	0.2	2.3	7.0	0.9	0.03
Aboriginal Head Start	633.003	6235.697	1.2	0.2	1.8	5.4	0.5	0.02
Child Development Centre	632.929	6236.112	1.1	0.2	1.6	4.9	0.4	0.02
Keeginaw Pre-School	633.173	6235.032	1.6	0.3	3.0	8.8	0.8	0.03
Totem Pre-School	635.236	6235.541	1.1	0.2	1.9	5.6	0.8	0.03
Rise and Shine Clubhouse	635.020	6235.584	1.2	0.2	1.8	5.4	0.8	0.03
Barney and Friends				-			-	
Family Daycare	643.482	6226.539	0.8	0.2	1.4	3.7	0.5	0.02
Hudson's Hope Playschool	643.946	6225.250	0.7	0.1	1.5	4.1	0.4	0.02
NOTE:			_					

Table G.9 Maximum predicted concentrations of particulate matter without background at child care facilities (in µg/m³)

	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Chunkey Monkey Daycare	634.736	6235.411	16	5.2	28	32	6.2	0.8
Oscare Daycare/Oscare Tots	632.978	6235.501	16	5.2	28	32	6.0	0.8
The Zoo Daycare	634.054	6236.232	16	5.2	29	34	5.9	0.8
Little Kritters Daycare	624.101	6239.158	15	5.0	27	28	5.5	0.8
ABC & 123 Family Daycare	635.818	6234.246	16	5.3	29	35	6.8	0.8
Baby Bear Daycare	634.940	6234.929	16	5.3	29	34	6.5	0.8
Rascals	626.867	6238.356	16	5.1	27	29	5.6	0.8
Building Blocks Daycare	632.341	6235.672	16	5.2	28	32	5.9	0.8
Kidz Club	635.485	6234.438	16	5.3	29	35	6.7	0.8
Northern Lights College Daycare	632.978	6235.501	16	5.2	28	32	6.0	0.8
Little Bear Family Daycare	634.746	6235.411	16	5.2	28	32	6.2	0.8
Little Peanuts Family Daycare	636.173	6234.279	16	5.3	29	35	6.7	0.8
Little Pigs Family Daycare	633.130	6236.459	16	5.1	28	31	5.8	0.8
Nanny Norma's Daycare	633.845	6237.086	16	5.1	28	31	5.7	0.8
Pitter Patter Day Care	635.907	6234.821	16	5.3	29	33	6.5	0.8
Puddle Jumpers	633.845	6237.086	16	5.1	28	31	5.7	0.8
Seeds to Sow	634.341	6235.509	16	5.2	29	34	6.1	0.8
The Playground Family Daycare	635.666	6234.938	16	5.3	29	34	6.4	0.8
The Wiggles and Giggles Daycare	632.583	6235.781	16	5.2	28	31	5.9	0.8
TJ's Playhouse	634.310	6235.425	16	5.2	29	34	6.2	0.8
Tot's and Tikes Family Daycare	633.117	6236.197	16	5.2	28	31	5.8	0.8
The Stepping Stones Centre	635.815	6235.192	16	5.2	29	33	6.3	0.8
Aboriginal Head Start	633.003	6235.697	16	5.2	28	32	5.9	0.8
Child Development Centre	632.929	6236.112	16	5.2	28	31	5.8	0.8
Keeginaw Pre-School	633.173	6235.032	17	5.3	29	35	6.2	0.8
Totem Pre-School	635.236	6235.541	16	5.2	28	32	6.2	0.8
Rise and Shine Clubhouse	635.020	6235.584	16	5.2	28	32	6.2	0.8
Barney and Friends Family Daycare	643.482	6226.539	16	5.1	28	30	5.9	0.8
Hudson's Hope Playschool	643.946	6225.250	16	5.1	28	30	5.8	0.8
NOTE:								

Table G.10 Maximum predicted concentrations of particulate matter with background at child care facilities (in µg/m³)

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Fort St John Hospital and Health Care	633.715	6235.551	1.2	0.2	3.0	9.0	0.7	0.03
Fort St John Medical Clinic	633.889	6235.722	1.1	0.2	3.0	9.0	0.6	0.03
Fort St John Pharmacy and Wellness Centre	633.623	6235.735	1.2	0.2	2.6	7.8	0.6	0.02
The Taylor Medical Clinic	643.866	6225.592	0.71	0.1	1.5	4.2	0.5	0.02
ABC Medical Clinic	633.516	6235.725	1.2	0.2	2.5	7.2	0.6	0.02
North Peace Medical Clinic	633.554	6235.725	1.2	0.2	2.5	7.4	0.6	0.02
NOTE:								

Table G.11 Maximum predicted concentrations of particulate matter without background at health care facilities (in µg/m³)

(a) 24-hour average based on worst-case 30-day period; units in mg/dm²-d.

Table G.12 Maximum predicted concentrations of particulate matter with background at health care facilities (in µg/m³)

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Fort St John Hospital and Health Care	633.715	6235.551	16	5.2	29	35	6.1	0.8
Fort St John Medical Clinic	633.889	6235.722	16	5.2	29	35	6.0	0.8
Fort St John Pharmacy and Wellness Centre	633.623	6235.735	16	5.2	29	34	6.0	0.8
The Taylor Medical Clinic	643.866	6225.592	16	5.1	28	30	5.9	0.8
ABC Medical Clinic	633.516	6235.725	16	5.2	29	33	6.0	0.8
North Peace Medical Clinic	633.554	6235.725	16	5.2	29	34	6.0	0.8

NOTE:

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Heritage Manor III	633.568	6236.327	1.1	0.2	1.8	5.3	0.4	0.02
Peace Lutheran Apt #1,	633.439	6236.439	1.0	0.2	1.5	4.6	0.4	0.02
Peace Lutheran Apt #2,	633.517	6236.442	1.0	0.2	1.6	4.8	0.4	0.02
The Sunset Home	633.588	6236.708	0.9	0.1	1.5	4.4	0.4	0.02
North Peace Care Centre	633.381	6236.534	1.0	0.2	1.5	4.5	0.4	0.02
Abbeyfield Houses of Fort St. John	635.602	6235.204	1.2	0.2	2.3	7.1	0.9	0.03
New Senior Housing	633.553	6236.243	1.1	0.2	1.9	5.5	0.5	0.02

Table G.13 Maximum predicted concentrations of particulate matter without background at senior care facilities (in µg/m³)

NOTE:

(a) 24-hour average based on worst-case 30-day period; units in mg/dm²-d.

Table G.14 Maximum predicted concentrations of particulate matter with background at senior care facilities (in µg/m³)

Receptor ID	UTM Easting	UTM Northing	PM _{2.5}		PM ₁₀	TSP		Dustfall ^(a)
Receptor ID	(km)	(km)	24-hour	Annual	24-hour	24-hour	Annual	24-hour
Heritage Manor III	633.568	6236.327	16	5.2	28	31	5.8	0.8
Peace Lutheran Apt #1,	633.439	6236.439	16	5.2	28	31	5.8	0.8
Peace Lutheran Apt #2,	633.517	6236.442	16	5.2	28	31	5.8	0.8
The Sunset Home	633.588	6236.708	16	5.1	28	31	5.8	0.8
North Peace Care Centre	633.381	6236.534	16	5.1	28	31	5.8	0.8
Abbeyfield Houses of Fort St. John	635.602	6235.204	16	5.2	29	33	6.3	0.8
New Senior Housing	633.553	6236.243	16	5.2	28	32	5.8	0.8

NOTE:

	ug/m ³) UTM Easting	UTM Northing	a NO₂			NO ₂ SO ₂				
Receptor ID	(km)	(km)	1-Hour	24-Hour	Annual	1-Hour	24-Hour	Annua		
Decidence 1	630.981	6232.372	158		3.8	2.6	0.2	0.02		
Residence 1				33						
Residence 2	630.756	6232.335	160	34	4.2	2.4	0.2	0.02		
Residence 3	630.717	6232.314	160	34	4.8	2.3	0.2	0.03		
Residence 4	630.581	6232.296	160	34	4.1	2.0	0.2	0.02		
Residence 5	630.552	6232.296	160	34	4.3	2.1	0.2	0.02		
Residence 6	630.247	6232.403	153	26	2.8	2.2	0.2	0.01		
Residence 7	634.997	6230.486	136	21	3.4	0.7	0.1	0.01		
Residence 8	634.862	6230.523	139	21	3.5	0.8	0.1	0.01		
Residence 9	635.041	6230.506	135	20	3.4	0.7	0.1	0.01		
Residence 10	635.124	6230.508	134	20	3.3	0.7	0.1	0.01		
Residence 11	634.535	6230.703	141	23	3.5	0.8	0.10	0.01		
Residence 12	634.579	6230.785	141	23	3.4	0.8	0.09	0.01		
Residence 13	634.743	6230.833	141	22	3.2	0.9	0.08	0.01		
Residence 14	634.840	6230.765	141	22	3.3	0.9	0.09	0.01		
Residence 15	634.898	6230.703	141	21	3.3	0.9	0.10	0.01		
Residence 16	634.982	6230.627	139	21	3.3	0.8	0.1	0.01		
Residence 17	635.045	6230.755	141	21	3.2	0.8	0.09	0.01		
Residence 18	635.042	6230.725	140	21	3.2	0.8	0.09	0.01		
Residence 19	635.072	6230.654	138	21	3.2	0.8	0.10	0.01		
Residence 20	635.123	6230.659	138	20	3.2	0.7	0.10	0.01		
Residence 21	635.138	6230.587	136	20	3.3	0.7	0.1	0.01		
Residence 22	630.252	6232.596	151	22	2.3	1.7	0.2	0.009		
Residence 23	633.547	6231.980	147	31	3.6	1.3	0.1	0.000		
Residence 24	633.549	6232.516	144	26	3.1	1.5	0.1	0.01		
Residence 25	633.590	6232.546	144	25	3.0	1.5	0.1	0.01		
Residence 26	633.545	6231.881	147	32	3.7	1.4	0.1	0.01		
Residence 27	633.547	6231.893	147	32	3.7	1.4	0.1	0.01		
Residence 28	634.090	6232.671	143	24	2.8	1.4	0.1	0.01		
			143	24	3.0	1.4		0.01		
Residence 29	634.047	6232.473					0.1	-		
Residence 30	634.132	6232.501	144	25	3.0	1.5	0.1	0.01		
Residence 31	633.822	6232.438	146	27	3.1	1.6	0.1	0.01		
Residence 32	633.703	6232.241	146	29	3.3	1.6	0.1	0.01		
Residence 33	633.970	6232.454	144	26	3.0	1.5	0.1	0.01		
Residence 34	632.469	6230.313	149	38	7.0	2.3	0.2	0.02		
Residence 35	632.227	6231.391	154	42	6.3	2.8	0.2	0.03		
Residence 36	630.438	6232.091	164	37	3.9	2.7	0.2	0.02		
Residence 37	631.858	6231.027	170	44	8.2	3.3	0.3	0.03		
Residence 38	631.693	6231.612	161	44	7.0	3.0	0.4	0.03		
Residence 39	633.385	6231.479	150	35	4.4	1.7	0.1	0.02		
Residence 40	634.217	6230.914	143	25	3.6	0.9	0.09	0.01		
Residence 41	635.205	6230.478	132	20	3.3	0.7	0.1	0.01		
Residence 42	634.888	6230.495	138	21	3.5	0.8	0.1	0.01		
Residence 43	631.729	6232.627	150	27	3.4	2.0	0.2	0.01		
Residence 44	631.892	6232.432	150	32	4.0	2.3	0.2	0.02		
Residence 45	632.827	6232.458	145	27	3.5	1.6	0.2	0.01		
Residence 46	633.108	6232.423	146	28	3.4	1.5	0.2	0.01		
Residence 47	633.417	6232.513	145	26	3.1	1.4	0.1	0.01		
Residence 48	630.233	6232.814	148	19	2.0	1.4	0.1	0.008		
Residence 49	630.237	6232.750	149	20	2.0	1.5	0.1	0.008		
Residence 50	630.223	6232.954	147	17	1.8	1.3	0.1	0.007		
Residence 51	630.236	6232.907	147	18	1.8	1.3	0.1	0.007		

Table G.15 Maximum predicted concentrations of NO₂ and SO₂ at ground-truthed residences $(in \mu q/m^3)$

Residence 52	633.410	6233.370	114	21	2.2	1.0	0.1	0.008
Residence 53	633.348	6233.331	147	22	2.4	1.0	0.1	0.009
Residence 54	634.909	6233.462	127	18	1.9	1.2	0.07	0.007
Residence 55	634.900	6233.602	122	18	1.8	1.2	0.07	0.007
Residence 56	635.348	6233.713	117	16	1.7	0.76	0.06	0.007
Residence 57	629.555	6232.927	148	15	1.6	1.4	0.1	0.007
Residence 58	629.316	6232.906	148	16	1.6	1.4	0.1	0.007
Residence 59	629.323	6232.964	147	16	1.6	1.3	0.1	0.007
Residence 60	630.449	6232.305	159	33	4.4	2.2	0.2	0.02
Residence 61	635.088	6230.518	135	20	3.3	0.7	0.11	0.01
Residence 62	634.706	6230.715	141	22	3.3	0.8	0.09	0.01
Residence 63	634.632	6230.798	141	23	3.3	0.8	0.09	0.01
Residence 64	634.537	6230.925	142	23	3.4	0.8	0.08	0.01
Residence 65	634.738	6230.939	141	22	3.2	0.9	0.08	0.01
Residence 66	634.844	6230.924	141	22	3.2	1.0	0.08	0.01
Residence 67	634.799	6230.766	141	22	3.3	0.9	0.09	0.01
Residence 68	634.815	6230.761	141	22	3.3	0.9	0.09	0.01
Residence 69	634.889	6230.773	141	22	3.2	0.9	0.09	0.01
Residence 70	634.915	6230.769	141	21	3.2	0.8	0.09	0.01
Residence 71	634.844	6230.703	141	22	3.3	0.9	0.10	0.01
Residence 72	634.828	6230.713	141	22	3.3	0.9	0.10	0.01
Residence 73	634.951	6230.718	141	21	3.3	0.8	0.09	0.01
Residence 74	634.947	6230.768	141	21	3.2	0.8	0.09	0.01
Residence 75	635.008	6230.765	141	21	3.2	0.8	0.09	0.01
Residence 76	634.993	6230.715	141	21	3.2	0.8	0.09	0.01
Residence 77	635.076	6230.717	140	21	3.2	0.8	0.09	0.01
Residence 78	635.096	6230.718	139	21	3.2	0.8	0.09	0.01
Residence 79	635.089	6230.604	137	20	3.3	0.7	0.1	0.01
Residence 80	630.237	6232.630	150	22	2.2	1.6	0.2	0.009
Residence 81	628.453	6232.604	146	22	1.8	1.6	0.2	0.008
Residence 82	633.190	6230.482	147	31	5.0	1.3	0.1	0.02
Residence 83	633.355	6230.925	147	30	4.4	1.2	0.1	0.02
Residence 84	633.569	6230.686	145	28	4.3	1.0	0.1	0.01
Residence 85	635.202	6230.516	133	20	3.3	0.7	0.1	0.01
Residence 86	633.165	6232.660	143	24	3.0	1.4	0.2	0.01
Residence 87	630.279	6232.963	147	17	1.8	1.2	0.1	0.007

non-resi	dences (in µg/m	1 ³)							
Receptor ID	UTM Easting	UTM Northing	g NO ₂			SO ₂			
Receptor ID	(km)	(km)	1-hour	24-hour	Annual	1-hour	24-hour	Annual	
Non-residence 1	630.709	6228.334	182	49	23	4.4	0.5	0.06	
Non-residence 2	630.724	6228.349	182	49	24	4.5	0.5	0.06	
Non-residence 3	631.896	6230.979	182	43	8.4	3.2	0.3	0.03	
Non-residence 4	630.996	6232.371	158	33	3.8	2.6	0.2	0.02	
Non-residence 5	630.784	6232.310	160	36	5.0	2.5	0.2	0.03	
Non-residence 6	630.699	6232.333	160	34	4.1	2.2	0.2	0.02	
Non-residence 7	630.658	6232.313	160	34	5.8	2.2	0.2	0.04	
Non-residence 8	630.599	6232.308	160	34	4.5	2.0	0.2	0.02	
Non-residence 9	630.325	6232.338	156	29	3.5	2.3	0.2	0.02	
Non-residence 10	630.351	6232.358	156	29	3.3	2.2	0.2	0.02	
Non-residence 11	630.361	6232.357	156	29	3.3	2.2	0.2	0.02	
Non-residence 12	630.319	6232.360	155	28	3.2	2.2	0.2	0.02	
Non-residence 13	630.328	6232.360	155	29	3.2	2.2	0.2	0.02	
Non-residence 14	630.302	6232.348	155	28	3.3	2.3	0.2	0.02	
Non-residence 15	630.246	6232.343	154	27	3.2	2.4	0.2	0.02	
Non-residence 16	630.255	6232.364	154	27	3.0	2.3	0.2	0.01	
Non-residence 17	630.255	6232.349	154	27	3.1	2.3	0.2	0.02	
Non-residence 18	630.896	6232.415	158	32	3.4	2.4	0.2	0.02	
Non-residence 19	630.888	6232.417	158	32	3.4	2.4	0.2	0.02	
Non-residence 20	630.895	6232.422	158	32	3.4	2.4	0.2	0.02	
Non-residence 21	630.528	6232.328	159	32	3.9	2.1	0.2	0.02	
Non-residence 22	630.527	6232.347	158	32	3.5	2.0	0.2	0.02	
Non-residence 23	630.499	6232.316	159	32	4.4	2.1	0.2	0.02	
Non-residence 24	630.473	6232.305	159	33	4.7	2.2	0.2	0.02	
Non-residence 25	630.447	6232.321	158	31	4.2	2.2	0.2	0.02	
Non-residence 26	630.301	6232.359	155	28	3.2	2.3	0.2	0.02	
Non-residence 27	630.282	6232.385	154	27	2.9	2.2	0.2	0.02	
Non-residence 28	630.933	6232.456	158	31	3.3	2.4	0.2	0.01	
Non-residence 29	630.771	6232.361	159	33	3.7	2.4	0.2	0.02	
Non-residence 30	635.021	6230.444	134	20	3.4	0.7	0.2	0.02	
Non-residence 31	635.133	6230.463	133	20	3.3	0.7	0.1	0.01	
Non-residence 32	634.933	6230.465	137	20	3.5	0.8	0.1	0.01	
Non-residence 33	634.669	6230.722	141	22	3.4	0.8	0.09	0.01	
Non-residence 34	634.373	6230.747	142	24	3.6	0.8	0.09	0.01	
Non-residence 35	634.381	6230.741	142	24	3.6	0.8	0.09	0.01	
Non-residence 36	634.454	6230.786	142	24	3.5	0.8	0.09	0.01	
Non-residence 37	634.721	6230.824	141	24	3.2	0.9	0.03	0.01	
Non-residence 38	634.904	6230.735	141	21	3.3	0.9	0.00	0.01	
Non-residence 39	634.976	6230.724	141	21	3.2	0.9	0.09	0.01	
Non-residence 40	634.975	6230.734	141	21	3.2	0.8	0.09	0.01	
Non-residence 40	635.079		136	20	3.3	0.8		0.01	
Non-residence 42	634.982	6230.582 6230.433	134	20	3.4	0.7	0.1	0.01	
Non-residence 43 Non-residence 44	634.986	6230.434	134	20	3.4	0.7	0.1	0.01	
Non-residence 44	634.990	6230.433	134	20 21	3.4 3.2	0.7 0.8	0.1	0.01	
	635.064	6230.733	140						
Non-residence 46	635.559	6230.553	126	18	3.0	0.6	0.10	0.01	
Non-residence 47	630.266	6232.703	149	21	2.1	1.5	0.1	0.009	
Non-residence 48	630.244	6232.580	151	23	2.3	1.7	0.2	0.01	
Non-residence 49	630.299	6232.482	152	25	2.6	1.9	0.2	0.01	
Non-residence 50	633.556	6232.393	145	27	3.2	1.5	0.1	0.01	
Non-residence 51	633.672	6232.107	146	30	3.4	1.5	0.2	0.01	

Table G.16 Maximum predicted concentrations of NO₂ and SO₂ at ground-truthed non-residences (in ug/m^3)

Non-residence 52	633.541	6231.953	147	32	3.7	1.3	0.1	0.01
Non-residence 53	633.535	6231.964	147	32	3.7	1.3	0.1	0.01
Non-residence 54	631.988	6226.324	146	25	3.2	1.3	0.1	0.009
Non-residence 55	633.707	6232.186	146	29	3.4	1.6	0.2	0.01
Non-residence 56	634.245	6232.454	143	25	3.0	1.4	0.1	0.01
Non-residence 57	634.231	6232.707	142	23	2.8	1.3	0.1	0.01
Non-residence 58	634.232	6232.711	142	23	2.8	1.3	0.1	0.01
Non-residence 59	633.703	6232.491	145	26	3.1	1.5	0.1	0.01
Non-residence 60	633.718	6232.487	145	26	3.1	1.5	0.1	0.01
Non-residence 61	634.013	6232.543	144	25	2.9	1.5	0.1	0.01
Non-residence 62	634.065	6232.496	144	25	3.0	1.5	0.1	0.01
Non-residence 63	636.582	6232.572	120	17	1.8	0.3	0.04	0.006
Non-residence 64	634.044	6232.415	144	26	3.0	1.5	0.1	0.01
Non-residence 65	636.569	6232.484	121	17	1.8	0.4	0.04	0.006
Non-residence 66	634.109	6232.491	144	25	3.0	1.5	0.1	0.01
Non-residence 67	636.664	6232.507	119	17	1.8	0.3	0.04	0.006
Non-residence 68	634.117	6232.506	144	25	3.0	1.5	0.1	0.01
Non-residence 69	634.130	6232.514	144	25	3.0	1.5	0.1	0.01
Non-residence 70	636.698	6232.511	118	16	1.8	0.3	0.04	0.006
Non-residence 70	636.681	6232.499	119	17	1.8	0.3	0.04	0.006
Non-residence 72	636.727	6232.539	117	16	1.8	0.3	0.04	0.000
Non-residence 73	636.788	6232.473	117	16	1.8	0.3	0.04	0.000
Non-residence 74	633.847	6232.489	144	26	3.0	1.5	0.04	0.000
Non-residence 75	633.760	6232.438	144	20	3.1	1.6	0.1	0.01
Non-residence 76	634.147	6232.482	144	25	3.0	1.5	0.1	0.01
Non-residence 77	633.694	6232.129	146	30	3.4	1.6	0.2	0.01
Non-residence 78	633.664	6232.127	146	30	3.4	1.5	0.2	0.01
Non-residence 79	633.683	6232.132	146	30	3.4	1.5	0.2	0.01
Non-residence 80	633.703	6232.133	146	29	3.4	1.6	0.2	0.01
Non-residence 81	633.712	6232.132	146	29	3.4	1.6	0.2	0.01
Non-residence 82	633.695	6232.140	146	29	3.4	1.6	0.2	0.01
Non-residence 83	634.318	6232.305	144	25	3.0	1.5	0.1	0.01
Non-residence 84	633.676	6232.153	146	29	3.4	1.6	0.2	0.01
Non-residence 85	633.702	6232.170	146	29	3.4	1.6	0.2	0.01
Non-residence 86	636.793	6232.437	117	16	1.8	0.3	0.04	0.006
Non-residence 87	636.794	6232.426	117	16	1.8	0.3	0.04	0.006
Non-residence 88	636.747	6232.422	118	16	1.8	0.3	0.04	0.006
Non-residence 89	636.776	6232.519	116	16	1.8	0.3	0.04	0.006
Non-residence 90	633.791	6232.477	146	26	3.1	1.5	0.1	0.01
Non-residence 91	633.665	6232.282	146	28	3.3	1.6	0.1	0.01
Non-residence 92	633.664	6232.298	146	28	3.3	1.6	0.1	0.01
Non-residence 93	633.685	6232.296	146	28	3.3	1.6	0.1	0.01
Non-residence 94	633.676	6232.289	146	28	3.3	1.6	0.1	0.01
Non-residence 95	633.706	6232.222	146	29	3.3	1.6	0.2	0.01
Non-residence 96	633.703	6232.200	146	29	3.3	1.6	0.2	0.01
Non-residence 97	633.730	6232.221	146	29	3.3	1.6	0.2	0.01
Non-residence 98	633.806	6232.494	145	26	3.0	1.5	0.1	0.01
Non-residence 99	633.805	6232.498	145	26	3.0	1.5	0.1	0.01
Non-residence 100	636.768	6232.602	116	16	1.8	0.3	0.04	0.006
Non-residence 101	633.805	6232.503	145	26	3.0	1.5	0.1	0.01
Non-residence 102	633.908	6232.447	144	26	3.0	1.6	0.1	0.01
Non-residence 103	633.911	6232.490	144	26	3.0	1.5	0.1	0.01
Non-residence 104	632.547	6230.574	150	37	6.0	1.6	0.1	0.01
Non-residence 105	631.982	6231.163	161	43	7.5	3.2	0.2	0.02
			1101	170	1.0	10.2	10.0	10.00
Non-residence 106	631.982	6231.127	161	43	7.5	3.2	0.3	0.03

Non-residence 108	632.131	6231.351	156	43	6.7	2.8	0.3	0.03
Non-residence 109	632.237	6231.408	154	42	6.3	2.5	0.2	0.03
Non-residence 110	630.192	6232.050	160	33	3.7	3.3	0.3	0.02
Non-residence 111	630.176	6232.008	161	34	3.9	3.4	0.3	0.02
Non-residence 112	630.031	6232.003	159	30	4.0	3.6	0.3	0.02
Non-residence 113	630.039	6231.965	160	32	4.2	3.7	0.3	0.02
Non-residence 114	630.433	6232.124	163	36	3.8	2.6	0.2	0.02
Non-residence 115	630.415	6232.072	164	37	4.0	2.8	0.2	0.02
Non-residence 116	630.397	6232.048	164	38	4.0	2.9	0.2	0.02
Non-residence 117	630.429	6232.027	165	39	4.2	2.9	0.2	0.02
Non-residence 118	630.394	6231.969	166	40	4.4	3.0	0.2	0.02
Non-residence 119	630.393	6231.980	166	40	4.3	3.0	0.2	0.02
Non-residence 120	630.419	6231.972	166	40	4.4	3.0	0.2	0.02
Non-residence 121	630.431	6231.946	167	41	4.6	3.0	0.2	0.02
Non-residence 122	630.345	6232.115	162	35	3.7	2.8	0.2	0.02
Non-residence 123	630.273	6232.059	162	35	3.8	3.1	0.2	0.02
Non-residence 124	630.296	6232.052	162	36	3.9	3.1	0.2	0.02
Non-residence 125	630.300	6232.083	162	35	3.7	3.0	0.2	0.02
Non-residence 126	630.256	6232.003	161	34	3.7	3.1	0.2	0.02
Non-residence 120	630.239	6232.054	161	34	3.8	3.1	0.2	0.02
	628.501			21		1.4		
Non-residence 128		6232.716	146		1.7		0.1	0.007
Non-residence 129	631.705	6231.574	162	44	7.2	2.9	0.4	0.03
Non-residence 130	633.145	6231.522	151	37	4.5	1.9	0.1	0.02
Non-residence 131	633.295	6231.506	150	35	4.4	1.8	0.1	0.02
Non-residence 132	633.349	6231.512	150	35	4.4	1.7	0.1	0.02
Non-residence 133	633.275	6231.506	150	36	4.4	1.8	0.1	0.02
Non-residence 134	633.386	6231.498	150	35	4.3	1.7	0.1	0.02
Non-residence 135	633.269	6230.441	146	31	5.0	1.3	0.1	0.02
Non-residence 136	633.237	6230.581	147	31	4.8	1.2	0.1	0.02
Non-residence 137	633.292	6230.470	146	31	4.9	1.2	0.1	0.02
Non-residence 138	633.261	6230.472	146	31	4.9	1.2	0.1	0.02
Non-residence 139	633.225	6230.449	146	31	5.0	1.3	0.1	0.02
Non-residence 140	633.391	6230.914	146	30	4.4	1.2	0.1	0.02
Non-residence 141	633.630	6230.661	144	28	4.3	1.0	0.1	0.01
Non-residence 142	633.628	6230.657	144	28	4.3	1.0	0.1	0.01
Non-residence 143	631.766	6232.355	150	32	4.4	2.4	0.2	0.02
Non-residence 144	631.411	6232.490	152	27	3.4	2.5	0.2	0.02
Non-residence 145	631.403	6232.484	152	28	3.5	2.5	0.2	0.02
Non-residence 146	631.876	6232.603	151	29	3.6	2.0	0.2	0.02
Non-residence 147	632.203	6232.437	153	32	4.0	2.8	0.2	0.02
Non-residence 148	632.427	6232.483	148	29	3.7	3.2	0.3	0.02
Non-residence 149	632.632	6232.445	145	29	3.6	3.0	0.2	0.02
Non-residence 150	632.430	6231.891	151	42	5.0	2.1	0.2	0.02
Non-residence 151	632.963	6232.611	143	24	3.2	1.5	0.2	0.02
Non-residence 152	632.828	6232.481	145	24	3.4	1.6	0.2	0.01
Non-residence 152	633.145	6232.700	145	24	3.4	1.6	0.2	0.01
Non-residence 153								
	633.134	6232.689	143	24	3.0	1.4	0.2	0.01
Non-residence 155	633.442	6232.703	143	24	2.9	1.4	0.1	0.01
Non-residence 156	633.084	6232.423	146	28	3.4	1.5	0.2	0.01
Non-residence 157	633.105	6232.405	146	28	3.4	1.5	0.2	0.01
Non-residence 158	633.046	6232.480	145	27	3.3	1.5	0.2	0.01
Non-residence 159	633.419	6232.447	145	27	3.2	1.4	0.1	0.01
Non-residence 160	633.452	6232.453	145	27	3.2	1.5	0.1	0.01
Non-residence 161	633.424	6232.451	145	27	3.2	1.4	0.1	0.01
Non-residence 162	633.127	6232.758	142	23	2.9	1.4	0.2	0.01
Non-residence 163	630.249	6232.842	148	19	1.9	1.4	0.1	0.008

Non-residence 164	630.298	6232.738	149	21	2.1	1.4	0.1	0.009
Non-residence 165	630.247	6232.782	149	19	2.0	1.4	0.1	0.008
Non-residence 166	634.386	6233.116	140	20	2.3	1.1	0.09	0.009
Non-residence 167	634.207	6232.732	142	23	2.8	1.3	0.1	0.01
Non-residence 168	635.335	6233.676	118	16	1.7	0.8	0.06	0.007
Non-residence 169	635.310	6233.690	118	16	1.7	0.8	0.06	0.007
Non-residence 170	636.056	6233.139	123	17	1.8	0.5	0.05	0.006
Non-residence 171	635.660	6233.183	128	18	1.9	0.9	0.06	0.007
Non-residence 172	635.581	6233.534	121	16	1.7	0.7	0.06	0.007
Non-residence 173	635.575	6233.206	129	18	1.9	0.9	0.06	0.007
Non-residence 174	635.529	6233.502	122	17	1.7	0.7	0.06	0.007
Non-residence 175	635.633	6233.267	127	17	1.8	0.8	0.06	0.007
Non-residence 176	635.687	6233.405	123	17	1.7	0.6	0.06	0.007
Non-residence 177	635.751	6233.348	123	17	1.7	0.6	0.06	0.007
Non-residence 178	635.820	6233.359	122	17	1.7	0.6	0.06	0.006
Non-residence 179	630.258	6232.922	147	18	1.8	1.3	0.1	0.007
Non-residence 180	634.541	6233.203	138	19	2.1	1.1	0.09	0.008
Non-residence 181	633.385	6233.309	117	22	2.2	1.0	0.00	0.000
Non-residence 182	633.348	6233.268	117	22	2.2	1.0	0.1	0.009
	633.503		113	22	2.3			
Non-residence 183		6233.342				1.0	0.1	0.008
Non-residence 184	633.633	6233.221	126	22	2.3	1.0	0.1	0.009
Non-residence 185	634.933	6233.444	128	18	1.9	1.2	0.07	0.007
Non-residence 186	635.804	6233.334	123	17	1.7	0.6	0.1	0.006
Non-residence 187	633.576	6233.209	125	22	2.3	1.0	0.1	0.009
Non-residence 188	635.793	6233.323	123	17	1.7	0.6	0.06	0.006
Non-residence 189	635.790	6233.311	124	17	1.8	0.6	0.06	0.006
Non-residence 190	633.658	6233.135	133	23	2.4	1.1	0.1	0.009
Non-residence 191	635.803	6233.303	124	17	1.8	0.6	0.06	0.006
Non-residence 192	633.656	6233.119	134	23	2.4	1.1	0.1	0.009
Non-residence 193	635.749	6233.372	123	17	1.7	0.6	0.06	0.006
Non-residence 194	634.690	6233.086	141	20	2.2	1.0	0.08	0.009
Non-residence 195	635.608	6233.285	127	17	1.8	0.9	0.06	0.007
Non-residence 196	636.833	6232.745	113	16	1.7	0.3	0.03	0.006
Non-residence 197	633.745	6233.168	134	22	2.3	1.0	0.1	0.009
Non-residence 198	636.822	6232.743	114	16	1.7	0.3	0.03	0.006
Non-residence 199	633.760	6233.162	135	22	2.3	1.0	0.1	0.009
Non-residence 200	636.790	6232.734	114	16	1.7	0.3	0.03	0.006
Non-residence 201	636.777	6232.764	114	16	1.7	0.3	0.03	0.006
Non-residence 202	633.639					1.0	0.00	0.009
Non-residence 202	633.658	6233.221 6233.220	126	22	2.3	1.0	0.1	0.009
Non-residence 204	633.619	6233.125	132	23	2.4	1.1	0.1	0.009
Non-residence 205	634.432	6233.402	127	20	2.0	1.1	0.09	0.008
Non-residence 206	634.423	6233.360	129	20	2.0	1.1	0.09	0.008
Non-residence 207	634.340	6233.269	133	20	2.1	1.1	0.09	0.008
Non-residence 208	634.914	6233.603	121	18	1.8	1.2	0.07	0.007
Non-residence 209	634.903	6233.556	123	18	1.8	1.2	0.07	0.007
Non-residence 210	635.007	6233.494	126	17	1.9	1.2	0.07	0.007
Non-residence 211	635.007	6233.556	123	17	1.8	1.2	0.07	0.007
Non-residence 212	635.030	6233.644	120	17	1.8	1.2	0.07	0.007
Non-residence 213	635.234	6233.722	117	16	1.7	0.9	0.06	0.007
Non-residence 214	635.199	6233.691	118	16	1.7	1.0	0.06	0.007
Non-residence 215	636.133	6233.165	121	17	1.7	0.4	0.04	0.006
Non-residence 216	629.360	6232.774	150	17	1.7	1.6	0.1	0.007
Non-residence 217	629.356	6232.783	150	17	1.7	1.6	0.1	0.007
Non-residence 218	629.578	6232.895	149	15	1.6	1.5	0.1	0.007

Non-residence 220	629.334	6232.855	149	17	1.6	1.5	0.1	0.007
Non-residence 221	629.324	6232.873	149	17	1.6	1.5	0.1	0.007
Non-residence 222	629.292	6232.864	149	17	1.6	1.5	0.1	0.007
Non-residence 223	629.279	6232.862	149	17	1.6	1.5	0.1	0.007
Non-residence 224	629.331	6232.925	148	16	1.6	1.4	0.1	0.007
Non-residence 225	629.345	6232.916	148	16	1.6	1.4	0.1	0.007
Non-residence 226	629.348	6232.935	148	16	1.6	1.4	0.1	0.007
Non-residence 227	633.401	6232.733	143	24	2.9	1.4	0.1	0.01
Non-residence 228	630.655	6232.303	160	35	4.4	2.2	0.2	0.02
Non-residence 229	630.407	6232.300	158	32	3.9	2.3	0.2	0.02
Non-residence 230	630.452	6232.324	158	31	4.0	2.2	0.2	0.02
Non-residence 231	630.360	6232.328	157	30	3.7	2.3	0.2	0.02
Non-residence 232	630.809	6232.413	159	32	3.4	2.3	0.2	0.02
Non-residence 233	630.679	6232.377	159	32	3.5	2.1	0.2	0.02
Non-residence 234	635.280	6230.416	129	19	3.3	0.6	0.1	0.01
Non-residence 235	634.753	6230.706	141	22	3.3	0.9	0.10	0.01
Non-residence 236	634.459	6230.807	142	24	3.5	0.8	0.09	0.01
Non-residence 237	634.485	6230.766	142	23	3.5	0.8	0.09	0.01
Non-residence 238	634.674	6230.781	141	22	3.3	0.8	0.09	0.01
Non-residence 239	634.719	6230.837	141	22	3.2	0.9	0.08	0.01
Non-residence 240	634.543	6230.948	142	23	3.3	0.8	0.07	0.01
Non-residence 241	634.915	6230.724	141	21	3.3	0.9	0.09	0.01
Non-residence 242	634.915	6230.654	141	21	3.3	0.9	0.1	0.01
Non-residence 243	635.018	6230.724	141	21	3.2	0.8	0.09	0.01
Non-residence 244	635.096	6230.655	138	21	3.2	0.7	0.10	0.01
Non-residence 245	635.128	6230.627	137	20	3.2	0.7	0.1	0.01
Non-residence 246	635.559	6230.527	126	18	3.0	0.6	0.1	0.010
Non-residence 247	630.258	6232.565	151	23	2.4	1.7	0.1	0.010
Non-residence 248	631.977	6226.320	146	25	3.2	1.3	0.2	0.009
Non-residence 249	633.954	6232.464	144	26	3.0	1.5	0.1	0.003
Non-residence 249	634.021	6232.502	144	25	3.0	1.5	0.1	0.01
Non-residence 250	636.675	6232.516	119	17	1.8	0.3	0.04	0.006
Non-residence 252	636.764	6232.524	117	16	1.8	0.3	0.04	0.000
Non-residence 252	633.791	6232.481	146	26	3.0	1.5	0.04	0.000
Non-residence 253	633.682	6232.260	146	20	3.3	1.6	0.1	0.01
			-	-			-	
Non-residence 255	633.808	6232.445	146	27	3.1	1.6	0.1	0.01
Non-residence 256	633.820	6232.470	145	26	3.1	1.5	0.1	0.01
Non-residence 257	631.968	6231.106	162	43	7.6	3.2	0.3	0.03
Non-residence 258	632.215	6231.407	154	43	6.3	3.0	0.3	0.03
Non-residence 259	630.179	6231.985	162	35	3.9	3.4	0.3	0.02
Non-residence 260	630.455	6232.103	164	37	3.9	2.6	0.2	0.02
Non-residence 261	630.434	6231.940	167	42	4.6	3.0	0.2	0.02
Non-residence 262	630.116	6232.674	151	19	2.1	1.7	0.1	0.008
Non-residence 263	628.548	6232.661	146	21	1.7	1.4	0.1	0.007
Non-residence 264	631.692	6231.654	159	43	6.7	3.0	0.4	0.03
Non-residence 265	633.277	6231.494	150	36	4.4	1.8	0.1	0.02
Non-residence 266	633.164	6230.500	147	32	5.0	1.3	0.1	0.02
Non-residence 267	633.210	6230.535	147	31	4.9	1.2	0.1	0.02
Non-residence 268	633.276	6230.498	146	31	4.9	1.2	0.1	0.02
Non-residence 269	633.220	6230.512	147	31	4.9	1.2	0.1	0.02
Non-residence 270	633.590	6230.696	145	28	4.3	1.0	0.1	0.01
Non-residence 271	634.866	6230.491	139	21	3.5	0.8	0.1	0.01
Non-residence 272	631.883	6232.606	151	29	3.6	2.0	0.2	0.02
Non-residence 273	632.540	6232.426	147	30	3.8	3.1	0.3	0.02
Non-residence 274	632.425	6231.891	151	42	5.0	2.0	0.2	0.02
Non-residence 275	633.140	6232.682	143	24	3.0	1.4	0.2	0.01

Non-residence 276	633.196	6232.449	145	27	3.3	1.4	0.2	0.01
Non-residence 277	630.243	6232.781	149	19	2.0	1.4	0.1	0.008
Non-residence 278	630.280	6232.975	146	17	1.8	1.2	0.1	0.007
Non-residence 279	635.385	6233.556	122	16	1.8	0.9	0.06	0.007
Non-residence 280	635.106	6233.424	128	17	1.9	1.1	0.07	0.007
Non-residence 281	635.812	6233.348	122	17	1.7	0.6	0.06	0.006
Non-residence 282	635.182	6233.689	118	16	1.7	1.1	0.06	0.007
Non-residence 283	636.388	6232.996	119	17	1.7	0.3	0.04	0.006
Non-residence 284	629.248	6233.007	147	16	1.5	1.3	0.1	0.006
Non-residence 285	629.176	6232.862	148	18	1.6	1.5	0.1	0.007
Non-residence 286	629.578	6232.917	148	15	1.6	1.4	0.1	0.007
Non-residence 287	629.256	6232.919	148	17	1.6	1.4	0.1	0.007

(in µg/n	1 ³)								
Receptor ID	UTM Easting	UTM Northing	NO ₂			SO ₂			
Receptor ID	(km)	(km)	1-hour	24-hour	Annual	1-hour	24-hour	Annual	
Unknown Building 1	644.950	6225.018	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 2	644.872	6225.507	33	4.3	0.6	0.2	0.03	0.002	
Unknown Building 3	644.880	6225.504	33	4.3	0.5	0.2	0.03	0.002	
Unknown Building 4	644.952	6225.002	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 5	644.955	6224.971	31	4.3	0.5	0.2	0.03	0.002	
Unknown Building 6	644.947	6224.943	31	4.3	0.5	0.2	0.03	0.002	
Unknown Building 7	644.947	6224.925	31	4.3	0.5	0.2	0.03	0.002	
Unknown Building 8	644.963	6224.933	31	4.3	0.5	0.2	0.03	0.002	
Unknown Building 9	644.882	6225.060	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 10	643.566	6225.463	39	5.4	0.7	0.2	0.04	0.002	
Unknown Building 11	643.559	6225.463	39	5.4	0.7	0.2	0.04	0.002	
Unknown Building 12	643.374	6225.135	39	5.4	0.7	0.2	0.04	0.002	
Unknown Building 13	643.404	6225.133	39	5.4	0.7	0.2	0.04	0.002	
Unknown Building 14	643.403	6225.138	39	5.4	0.7	0.2	0.04	0.002	
Unknown Building 15	643.969	6223.120	31	4.0	0.4	0.2	0.03	0.001	
Unknown Building 16	643.834	6224.638	35	4.8	0.6	0.2	0.04	0.002	
Unknown Building 17	643.831	6224.618	35	4.8	0.6	0.2	0.04	0.002	
Unknown Building 18	644.950	6225.063	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 19	644.943	6225.062	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 20	644.951	6225.052	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 21	644.953	6225.057	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 22	644.933	6225.059	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 23	644.990	6224.918	31	4.2	0.5	0.2	0.03	0.002	
Unknown Building 24	644.990	6224.939	31	4.2	0.5	0.2	0.03	0.002	
Unknown Building 25	644.873	6225.014	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 26	644.713	6224.856	31	4.4	0.5	0.2	0.03	0.002	
Unknown Building 27	644.760	6224.826	31	4.4	0.5	0.2	0.03	0.002	
Unknown Building 28	644.816	6224.832	31	4.3	0.5	0.2	0.03	0.002	
Unknown Building 29	644.815	6224.853	31	4.3	0.5	0.2	0.03	0.002	
Unknown Building 30	644.843	6224.892	31	4.3	0.5	0.2	0.03	0.002	
Unknown Building 31	644.871	6224.825	31	4.3	0.5	0.2	0.03	0.002	
Unknown Building 32	644.906	6224.940	31	4.3	0.5	0.2	0.03	0.002	
Unknown Building 33	644.867	6224.969	32	4.3	0.5	0.2	0.03	0.002	
Unknown Building 34	643.667	6225.359	38	5.2	0.7	0.2	0.04	0.002	
Unknown Building 35	643.773	6225.267	37	5.1	0.6	0.2	0.04	0.002	
Unknown Building 36	643.797	6225.227	37	5.1	0.6	0.2	0.04	0.002	
Unknown Building 37	643.806	6225.168	37	5.0	0.6	0.2	0.04	0.002	
Unknown Building 38	643.808	6225.162	37	5.0	0.6	0.2	0.04	0.002	
Unknown Building 39	643.766	6225.177	37	5.1	0.6	0.2	0.04	0.002	
Unknown Building 40	643.683	6225.204	38	5.1	0.6	0.2	0.04	0.002	
Unknown Building 41	643.681	6225.221	38	5.2	0.6	0.2	0.04	0.002	
Unknown Building 42	643.634	6225.271	38	5.2	0.6	0.2	0.04	0.002	
Unknown Building 43	643.633	6225.252	38	5.2	0.6	0.2	0.04	0.002	
Unknown Building 44	643.894	6223.384	32	4.2	0.4	0.2	0.04	0.001	
Unknown Building 45	643.856	6223.461	32	4.3	0.4	0.2	0.03	0.001	
Unknown Building 46	644.033	6223.096	31	4.0	0.4	0.1	0.03	0.001	
Unknown Building 47	644.849	6225.100	32	4.3	0.5	0.1	0.03	0.002	
Unknown Building 48	644.708	6225.309	33	4.4	0.6	0.2	0.03	0.002	
Unknown Building 49	644.412	6224.131	31	4.4	0.5	0.2	0.03	0.002	
Unknown Building 50	644.406	6224.149	31	4.4	0.5	0.2	0.03	0.001	
Unknown Building 51	643.639	6225.491	38	5.3	0.3	0.2	0.03	0.001	
Unknown Bulluing 51	043.039	0220.491	100	0.0	0.7	0.2	0.04	0.002	

Table G.17 Maximum predicted concentrations of NO₂ and SO₂ at unknown buildings (in ua/m^3)

			1	1	1	1		1
Unknown Building 52	643.623	6225.483	38	5.3	0.7	0.2	0.04	0.002
Unknown Building 53	643.691	6225.415	38	5.2	0.7	0.2	0.04	0.002
Unknown Building 54	643.709	6225.375	38	5.2	0.6	0.2	0.04	0.002
Unknown Building 55	643.700	6225.363	38	5.2	0.6	0.2	0.04	0.002
Unknown Building 56	643.664	6225.368	38	5.2	0.7	0.2	0.04	0.002
Unknown Building 57	642.358	6232.697	44	6.6	0.9	0.2	0.03	0.003
Unknown Building 58	642.370	6232.697	44	6.6	0.9	0.2	0.03	0.003
Unknown Building 59	641.707	6232.306	46	7.1	1.0	0.2	0.03	0.003
Unknown Building 60	641.716	6232.294	46	7.1	1.0	0.2	0.03	0.003
Unknown Building 61	639.639	6231.988	68	9.8	1.3	0.2	0.03	0.004
Unknown Building 62	639.669	6231.968	67	9.7	1.3	0.2	0.04	0.004
Unknown Building 63	641.692	6232.162	49	7.1	1.0	0.2	0.03	0.003
Unknown Building 64	639.724	6231.971	66	9.6	1.2	0.2	0.04	0.004
Unknown Building 65	641.692	6232.158	49	7.1	1.0	0.2	0.03	0.003
Unknown Building 66	642.008	6232.583	46	6.9	0.9	0.2	0.03	0.003
Unknown Building 67	639.730	6231.945	67	9.6	1.2	0.2	0.04	0.004
Unknown Building 68	641.731	6232.165	49	7.0	1.0	0.2	0.03	0.003
Unknown Building 69	641.983	6232.575	46	6.9	0.9	0.2	0.03	0.003
Unknown Building 70	639.694	6231.927	68	9.7	1.3	0.2	0.04	0.004
Unknown Building 71	641.719	6232.146	49	7.1	1.0	0.2	0.03	0.003
Unknown Building 72	641.977	6232.585	46	6.9	0.9	0.2	0.03	0.003
Unknown Building 73	641.745	6232.141	49	7.0	1.0	0.2	0.03	0.003
Unknown Building 74	641.764	6232.131	49	7.0	1.0	0.2	0.03	0.003
Unknown Building 75	641.939	6232.450	46	7.0	1.0	0.2	0.03	0.003
Unknown Building 76	641.800	6232.154	48	7.0	1.0	0.2	0.03	0.003
Unknown Building 77	641.817	6232.160	48	6.9	1.0	0.2	0.03	0.003
Unknown Building 78	641.827	6232.134	48	6.9	1.0	0.2	0.03	0.003
Unknown Building 79	641.220	6232.063	54	7.6	1.0	0.2	0.03	0.003
Unknown Building 80	641.784	6232.059	50	6.9	1.0	0.2	0.03	0.003
Unknown Building 81	641.219	6232.071	54	7.6	1.0	0.2	0.03	0.003
Unknown Building 82	641.751		50	7.0	1.0	0.2	0.03	0.003
Unknown Building 83	641.219	6232.050	53	7.6	1.0	0.2	0.03	0.003
	641.208	6232.085	53	7.6	1.0	0.2	0.03	0.003
Unknown Building 84		6232.134						
Unknown Building 85	641.842	6232.556	47	7.1	1.0	0.2	0.03	0.003
Unknown Building 86	641.200	6232.134	53	7.6	1.0	0.2	0.03	0.003
Unknown Building 87	641.242	6232.144	52	7.6	1.0	0.2	0.03	0.003
Unknown Building 88	641.273	6232.106	53	7.5	1.0	0.2	0.03	0.003
Unknown Building 89	641.267	6232.081	53	7.5	1.0	0.2	0.03	0.003
Unknown Building 90	641.350	6232.123	52	7.4	1.0	0.2	0.03	0.003
Unknown Building 91	641.913	6232.471	46	7.0	1.0	0.2	0.03	0.003
Unknown Building 92	641.360	6232.149	51	7.4	1.0	0.2	0.03	0.003
Unknown Building 93	641.339	6232.148	51	7.5	1.0	0.2	0.03	0.003
Unknown Building 94	641.334	6232.133	52	7.5	1.0	0.2	0.03	0.003
Unknown Building 95	641.329	6232.136	52	7.5	1.0	0.2	0.03	0.003
Unknown Building 96	641.319	6232.130	52	7.5	1.0	0.2	0.03	0.003
Unknown Building 97	641.716	6232.361	47	7.2	1.0	0.2	0.03	0.003
Unknown Building 98	641.726	6232.330	46	7.1	1.0	0.2	0.03	0.003
Unknown Building 99	642.420	6232.706	44	6.5	0.9	0.2	0.03	0.003
Unknown Building 100	641.719	6232.315	46	7.1	1.0	0.2	0.03	0.003
Unknown Building 101	642.414	6232.697	44	6.5	0.9	0.2	0.03	0.003
Unknown Building 102	641.708	6232.314	46	7.1	1.0	0.2	0.03	0.003
Unknown Building 103	641.729	6229.020	69	7.3	1.1	0.2	0.04	0.003
Unknown Building 104	641.715	6229.015	69	7.3	1.1	0.2	0.04	0.003
Unknown Building 105	641.684	6229.037	70	7.3	1.1	0.2	0.04	0.003
Unknown Building 106	641.664	6229.052	70	7.3	1.1	0.2	0.04	0.003
Unknown Building 107	641.684	6229.050	70	7.3	1.1	0.2	0.04	0.003
<u>v</u>								

	1		1	1	1	1	1	
Unknown Building 108	641.698	6229.109	71	7.2	1.1	0.2	0.04	0.003
Unknown Building 109	641.689	6228.896	68	7.4	1.1	0.2	0.04	0.003
Unknown Building 110	641.669	6228.915	69	7.4	1.1	0.2	0.04	0.003
Unknown Building 111	641.657	6228.840	68	7.4	1.1	0.2	0.04	0.003
Unknown Building 112	641.665	6228.834	68	7.4	1.1	0.2	0.04	0.003
Unknown Building 113	644.398	6226.367	37	4.9	0.7	0.2	0.03	0.002
Unknown Building 114	643.881	6226.485	38	5.4	0.7	0.2	0.04	0.002
Unknown Building 115	644.029	6226.070	37	5.2	0.7	0.2	0.04	0.002
Unknown Building 116	644.017	6226.086	37	5.2	0.7	0.2	0.04	0.002
Unknown Building 117	642.838	6226.416	46	6.3	0.8	0.2	0.04	0.003
Unknown Building 118	642.945	6226.433	45	6.4	0.9	0.2	0.04	0.003
Unknown Building 119	642.936	6226.428	45	6.5	0.9	0.2	0.04	0.003
Unknown Building 120	642.888	6226.854	48	6.4	0.8	0.2	0.04	0.003
Unknown Building 121	642.854	6226.949	49	6.4	0.8	0.2	0.04	0.003
Unknown Building 122	643.847	6226.177	37	5.4	0.7	0.2	0.04	0.002
Unknown Building 123	643.840	6226.157	38	5.4	0.7	0.2	0.04	0.002
Unknown Building 124	643.865	6226.164	37	5.4	0.7	0.2	0.04	0.002
Unknown Building 125	643.882	6226.134	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 126	643.897	6226.107	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 127	643.902	6226.101	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 128	643.599	6226.038	39	5.9	0.9	0.2	0.04	0.003
Unknown Building 129	643.616	6226.337	39	5.6	0.7	0.2	0.04	0.002
Unknown Building 130	643.663	6226.211	38	5.6	0.7	0.2	0.04	0.002
Unknown Building 131	643.697	6226.185	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 132	643.719	6226.149	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 133	643.736	6226.142	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 134	643.744	6226.087	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 135	643.748	6226.078	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 136	643.753	6226.063	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 137	641.735	6229.039	70	7.2	1.1	0.2	0.04	0.003
Unknown Building 138	643.909	6226.161	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 139	643.834	6226.210	38	5.4	0.7	0.2	0.04	0.002
Unknown Building 140	643.384	6226.373	41	5.9	0.8	0.2	0.04	0.002
Unknown Building 141	643.418	6226.364	41	5.8	0.8	0.2	0.04	0.002
Unknown Building 142	642.743	6226.973	50	6.5	0.9	0.2	0.04	0.003
Unknown Building 143	642.768	6226.982	50	6.5	0.9	0.2	0.04	0.003
Unknown Building 144	642.672	6226.501	48	6.5	0.8	0.2	0.04	0.003
Unknown Building 145	642.676	6226.447	47	6.5	0.8	0.2	0.04	0.003
Unknown Building 146	643.764	6226.139	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 147	643.755	6226.147	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 148	643.768	6226.152	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 149	643.779	6226.166	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 150	643.757	6226.160	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 151	643.771	6226.180	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 152	643.753	6226.187	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 153	643.720	6226.203	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 154	643.744	6226.210	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 155	643.832	6226.175	38	5.4	0.7	0.2	0.04	0.002
Unknown Building 156	643.172	6226.037	41	6.1	0.9	0.2	0.04	0.003
Unknown Building 157	643.203	6225.978	41	5.9	0.8	0.2	0.04	0.003
Unknown Building 158	643.484	6226.166	39	5.7	0.7	0.2	0.04	0.002
Unknown Building 159	643.367	6226.160	40	5.8	0.8	0.2	0.04	0.002
Unknown Building 160	643.528	6226.061	39	5.7	0.8	0.2	0.04	0.003
Unknown Building 161	643.545	6226.046	39	5.8	0.8	0.2	0.04	0.003
Unknown Building 162	643.536	6226.004	39	5.6	0.8	0.2	0.04	0.002
Unknown Building 163	643.472	6226.157	40	5.7	0.8	0.2	0.04	0.002
g.oo			1					

Unknown Building 164	643.587	6226.050	39	5.7	0.8	0.2	0.04	0.003
Unknown Building 165	643.185	6226.306	42	6.1	0.8	0.2	0.04	0.003
Unknown Building 166	643.027	6226.363	44	6.3	0.8	0.2	0.04	0.003
Unknown Building 167	641.436	6228.659	67	7.7	1.1	0.2	0.05	0.003
Unknown Building 168	642.961	6226.254	44	6.2	0.8	0.2	0.04	0.003
Unknown Building 169	644.004	6226.153	37	5.2	0.7	0.2	0.04	0.002
Unknown Building 170	643.970	6226.198	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 171	643.973	6226.201	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 172	643.968	6226.204	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 173	643.956	6226.214	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 174	641.724	6227.960	57	7.6	1.0	0.2	0.04	0.003
Unknown Building 175	641.741	6227.953	57	7.5	1.0	0.2	0.04	0.003
Unknown Building 176	641.677	6228.058	56	7.6	1.1	0.2	0.04	0.003
Unknown Building 177	641.672	6228.099	56	7.6	1.1	0.2	0.04	0.003
Unknown Building 178	641.666	6228.095	56	7.6	1.1	0.2	0.04	0.003
Unknown Building 179	643.902	6226.128	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 180	643.908	6226.118	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 181	643.914	6226.110	37	5.3	0.7	0.2	0.04	0.002
Unknown Building 182	643.882	6226.168	37	5.4	0.7	0.2	0.04	0.002
Unknown Building 183	643.875	6226.180	37	5.4	0.7	0.2	0.04	0.002
Unknown Building 184	639.183	6227.195	70	9.9	1.3	0.3	0.06	0.004
Unknown Building 185	639.162	6227.197	70	9.9	1.3	0.3	0.06	0.004
Unknown Building 186	638.997	6227.336	66	10	1.4	0.3	0.06	0.004
Unknown Building 187	639.202	6227.203	69	9.8	1.3	0.3	0.06	0.004
Unknown Building 188	643.875	6226.185	37	5.4	0.7	0.2	0.04	0.002
Unknown Building 189	643.868	6226.221	37	5.4	0.7	0.2	0.04	0.002
Unknown Building 190	643.761	6226.051	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 191	643.782	6226.058	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 192	643.814	6226.081	38	5.4	0.7	0.2	0.04	0.002
Unknown Building 193	643.801	6226.090	38	5.4	0.7	0.2	0.04	0.002
Unknown Building 194	643.797	6226.103	38	5.4	0.7	0.2	0.04	0.002
Unknown Building 195	643.794	6226.117	38	5.4	0.7	0.2	0.04	0.002
Unknown Building 196	643.793	6226.138	38	5.4	0.7	0.2	0.04	0.002
Unknown Building 197	643.767	6226.128	38	5.5	0.7	0.2	0.04	0.002
Unknown Building 198	643.268	6226.302	42	6.0	0.8	0.2	0.04	0.002
Unknown Building 199	643.292	6226.276	41	5.9	0.8	0.2	0.04	0.002
Unknown Building 200	643.216	6226.347	43	6.0	0.8	0.2	0.04	0.002
Unknown Building 201	643.224	6226.078	41	6.0	0.8	0.2	0.04	0.003
Unknown Building 202	643.256	6226.097	41	5.9	0.8	0.2	0.04	0.003
Unknown Building 203	643.288	6226.117	40	5.9	0.8	0.2	0.04	0.002
Unknown Building 204	643.339	6226.147	40	5.9	0.8	0.2	0.04	0.002
Unknown Building 205	643.303	6226.155	40	5.9	0.8	0.2	0.04	0.002
Unknown Building 206	622.081	6236.050	23	4.1	0.3	0.2	0.02	0.001
Unknown Building 207	622.088	6235.938	23	4.1	0.3	0.2	0.02	0.001
Unknown Building 208	622.090	6235.975	23	4.1	0.3	0.2	0.02	0.001
Unknown Building 209	621.912	6235.742	23	4.1	0.3	0.2	0.02	0.001
Unknown Building 210	622.223	6235.981	25	4.2	0.3	0.2	0.02	0.001
Unknown Building 211	622.240	6235.939	25	4.3	0.3	0.2	0.02	0.001
Unknown Building 212	643.342	6232.985	39	5.7	0.8	0.2	0.02	0.003
Unknown Building 213	642.375	6232.724	44	6.6	0.9	0.2	0.03	0.003
Unknown Building 214	642.401	6232.723	44	6.5	0.9	0.2	0.03	0.003
Unknown Building 215	643.329	6233.006	39	5.7	0.8	0.2	0.02	0.003
Unknown Building 216	642.416	6232.748	44	6.5	0.9	0.2	0.02	0.003
Unknown Building 217	643.334	6233.011	39	5.7	0.8	0.2	0.02	0.003
Unknown Building 218	642.409	6232.755	44	6.5	0.9	0.2	0.02	0.003
Unknown Building 219	643.338	6233.028	39	5.7	0.8	0.2	0.02	0.003
Endlern Banaling 210	10.000	10200.020		10.1			10.02	10.000

				1		1	1	1
Unknown Building 220	642.398	6232.749	44	6.5	0.9	0.2	0.02	0.003
Unknown Building 221	643.335	6233.152	40	5.7	0.8	0.2	0.02	0.003
Unknown Building 222	642.392	6232.749	44	6.5	0.9	0.2	0.02	0.003
Unknown Building 223	643.308	6233.164	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 224	642.368	6232.771	44	6.6	0.9	0.2	0.02	0.003
Unknown Building 225	643.304	6233.215	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 226	642.409	6232.760	44	6.5	0.9	0.2	0.02	0.003
Unknown Building 227	643.336	6233.207	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 228	643.314	6233.263	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 229	626.029	6235.450	49	7.7	0.5	0.3	0.04	0.003
Unknown Building 230	643.303	6233.282	41	5.8	0.8	0.2	0.02	0.003
Unknown Building 231	643.334	6233.306	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 232	643.313	6233.331	41	5.8	0.8	0.2	0.02	0.003
Unknown Building 233	643.300	6233.326	41	5.8	0.8	0.2	0.02	0.003
Unknown Building 234	643.203	6233.002	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 235	643.196	6232.991	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 236	643.246	6232.984	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 237	643.191	6232.960	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 238	643.239	6232.950	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 239	643.231	6232.911	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 240	646.432	6233.677	24	3.5	0.5	0.1	0.01	0.002
Unknown Building 241	646.501	6233.734	24	3.4	0.5	0.1	0.01	0.002
Unknown Building 242	626.927	6234.611	73	9.5	0.7	0.4	0.05	0.003
Unknown Building 243	643.244	6232.893	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 244	643.200	6232.869	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 245	646.378	6233.687	25	3.5	0.5	0.1	0.01	0.002
Unknown Building 246	643.189	6232.851	40	5.8	0.8	0.1	0.02	0.003
Unknown Building 247	646.378	6233.691	25	3.5	0.5	0.1	0.01	0.002
Unknown Building 248	643.204	6232.854	40	5.8	0.8	0.1	0.02	0.003
Unknown Building 249	646.354	6233.688	25	3.5	0.5	0.1	0.01	0.002
Unknown Building 250	643.219	6232.853	40	5.8	0.8	0.2	0.02	0.003
Unknown Building 251	646.357	6233.709	25	3.5	0.5	0.1	0.01	0.002
Unknown Building 252	643.238	6232.844	41	5.7	0.8	0.2	0.02	0.003
Unknown Building 253	643.016	6232.721	41	5.9	0.8	0.1	0.02	0.003
Unknown Building 254	643.326	6232.944	40	5.7	0.8	0.2	0.02	0.003
Unknown Building 255	643.315	6232.981	39	5.7	0.8	0.2	0.02	0.003
Unknown Building 256	642.409	6232.764	44	6.5	0.9	0.2	0.02	0.003
Unknown Building 257	642.409	6232.768	44	6.5	0.9	0.2	0.02	0.003
Unknown Building 258	642.434	6232.773	44	6.5	0.9	0.2	0.02	0.003
Unknown Building 259	642.331	6232.741	45	6.6	0.9	0.2	0.03	0.003
Unknown Building 260	642.316	6232.728	45	6.6	0.9	0.2	0.03	0.003
Unknown Building 261	642.298	6232.715	45	6.6	0.9	0.2	0.03	0.003
Unknown Building 262	642.963	6232.725	41	6.0	0.9	0.2	0.02	0.003
Unknown Building 263	621.923	6235.219	26	4.4	0.3	0.2	0.02	0.001
Unknown Building 264	621.936	6235.188	26	4.4	0.3	0.2	0.02	0.001
Unknown Building 265	621.979	6235.185	27	4.4	0.3	0.2	0.02	0.001
Unknown Building 266	625.563	6235.174	53	8.0	0.5	0.5	0.03	0.002
Unknown Building 267	625.767	6235.142	54	8.1	0.5	0.4	0.04	0.002
Unknown Building 268	627.442	6234.203	81	10	0.8	0.5	0.06	0.004
Unknown Building 269	626.401	6234.964	57	8.6	0.6	0.3	0.04	0.003
Unknown Building 270	626.381	6234.964	57	8.6	0.6	0.3	0.04	0.003
Unknown Building 271	626.452	6235.114	58	8.3	0.6	0.3	0.04	0.003
Unknown Building 272	626.453	6235.109	58	8.3	0.6	0.3	0.04	0.003
Unknown Building 273	626.630	6235.208	60	8.2	0.6	0.3	0.04	0.003
Unknown Building 274	626.467	6235.141	58	8.3	0.6	0.3	0.04	0.003
Unknown Building 275	626.461	6235.127	58	8.3	0.6	0.3	0.04	0.003
Entre	10-0.101	0-001121	100	10.0	10.0	10.0	10.01	10.000

Unknown Building 276	626.495	6235.173	58	8.2	0.6	0.3	0.04	0.003
Unknown Building 277	626.425	6235.038	58	8.5	0.6	0.3	0.04	0.003
Unknown Building 278	621.996	6237.816	18	3.0	0.2	0.1	0.01	0.0008
Unknown Building 279	622.012	6237.737	18	3.1	0.2	0.1	0.01	0.0008
Unknown Building 280	622.051	6237.728	18	3.1	0.2	0.1	0.01	0.0008
Unknown Building 281	622.041	6237.751	18	3.1	0.2	0.1	0.01	0.0008
Unknown Building 282	622.038	6237.770	18	3.1	0.2	0.1	0.01	0.0008
Unknown Building 283	622.001	6237.816	18	3.0	0.2	0.1	0.01	0.0008
Unknown Building 284	622.656	6235.987	29	4.6	0.3	0.3	0.02	0.001
Unknown Building 285	625.996	6235.432	50	7.7	0.5	0.3	0.04	0.003
Unknown Building 286	625.963	6235.416	50	7.7	0.5	0.3	0.04	0.003
Unknown Building 287	625.953	6235.405	51	7.7	0.5	0.3	0.04	0.003

Pagantar ID	UTM Easting	UTM Northing	NO ₂			SO ₂		
Receptor ID	(km)	(km)	1-hour	24-hour	Annual	1-hour	24-hour	Annual
Aboriginal Education Center	633.609	6235.391	92	11	0.9	0.5	0.06	0.003
Alwin Holland	633.853	6236.278	74	7.7	0.7	0.3	0.04	0.003
Baldonnel Elementary	642.961	6232.724	41	6.0	0.9	0.2	0.02	0.003
Bert Ambrose Elementary	633.698	6237.244	67	6.7	0.5	0.2	0.03	0.002
Bert Bowes Middle School	632.695	6235.420	96	9.3	0.9	0.6	0.10	0.004
Board Office	633.204	6236.129	70	7.6	0.7	0.4	0.05	0.003
Charlie Lake Elementary	626.866	6238.375	27	4.2	0.3	0.7	0.06	0.003
CM Finch Elementary	632.665	6236.509	60	7.0	0.6	0.5	0.05	0.003
Dr. Kearney Middle School	634.341	6236.419	73	8.0	0.7	0.3	0.03	0.003
Duncan Cran Elementary	635.468	6234.477	90	12	1.3	0.4	0.05	0.005
Ecole Central Elementary	633.100	6235.426	98	9.5	0.9	0.5	0.07	0.004
Facilities & Transportation	632.721	6235.227	106	11	0.9	0.6	0.1	0.004
Key Learning Centre	632.856	6235.390	99	9.3	0.9	0.5	0.09	0.004
North Peace Secondary	634.926	6234.932	71	9.6	1.1	0.4	0.05	0.004
Energetic Learning Campus	634.926	6234.932	71	9.6	1.1	0.4	0.05	0.004
Northern BC Distance Education	632.856	6235.390	99	9.3	0.9	0.5	0.09	0.004
Open Learning	632.856	6235.390	99	9.3	0.9	0.5	0.09	0.004
Robert Ogilvie Elementary	635.074	6235.572	61	8.2	0.9	0.3	0.04	0.003
Student Support Services	633.204	6236.129	70	7.6	0.7	0.4	0.05	0.003
Taylor Elementary	643.346	6227.033	44	6.0	0.8	0.2	0.04	0.002
Technology Services	633.204	6236.129	70	7.6	0.7	0.4	0.05	0.003
Upper Halfway Elementary	633.204	6236.129	70	7.6	0.7	0.4	0.05	0.003
Wonowon Elementary	633.204	6236.129	70	7.6	0.7	0.4	0.05	0.003

Table G.18 Maximum predicted concentrations of NO₂ and SO₂ at schools (in µg/m³)

(in µg/m³)							<u> </u>			
Receptor ID	UTM Easting	UTM Northing	NO ₂			SO ₂				
	(km)	(km)	1-hour	24-hour	Annual	1-hour	24-hour	Annual		
Chunkey Monkey Daycare	634.736	6235.411	68	9.0	0.9	0.4	0.05	0.003		
Oscare Daycare/Oscare Tots	632.978	6235.501	95	8.8	0.8	0.5	0.08	0.004		
The Zoo Daycare	634.054	6236.232	74	8.1	0.7	0.3	0.04	0.003		
Little Kritters Daycare	624.101	6239.158	35	3.1	0.2	0.3	0.02	0.001		
ABC & 123 Family Daycare	635.818	6234.246	98	13	1.4	0.4	0.04	0.005		
Baby Bear Daycare	634.940	6234.929	71	9.6	1.1	0.4	0.05	0.004		
Rascals	626.867	6238.356	27	4.2	0.3	0.7	0.06	0.003		
Building Blocks Daycare	632.341	6235.672	77	8.5	0.8	0.7	0.1	0.004		
Kidz Club	635.485	6234.438	92	12	1.3	0.4	0.05	0.005		
Northern Lights College Daycare	632.978	6235.501	95	8.8	0.8	0.5	0.08	0.004		
Little Bear Family Daycare	634.746	6235.411	68	9.0	0.9	0.4	0.05	0.003		
Little Peanuts Family Daycare	636.173	6234.279	95	13	1.3	0.3	0.04	0.005		
Little Pigs Family Daycare	633.130	6236.459	68	7.4	0.6	0.3	0.05	0.003		
Nanny Norma's Daycare	633.845	6237.086	69	6.8	0.5	0.2	0.03	0.002		
Pitter Patter Day Care	635.907	6234.821	81	11	1.1	0.3	0.04	0.004		
Puddle Jumpers	633.845	6237.086	69	6.8	0.5	0.2	0.03	0.002		
Seeds to Sow	634.341	6235.509	75	9.8	0.9	0.4	0.05	0.003		
The Playground Family Daycare	635.666	6234.938	78	10	1.1	0.3	0.04	0.004		
The Wiggles and Giggles Daycare	632.583	6235.781	76	8.0	0.8	0.5	0.09	0.003		
TJ's Playhouse	634.310	6235.425	77	10	0.9	0.5	0.05	0.003		
Tot's and Tikes Family Daycare	633.117	6236.197	67	7.5	0.7	0.4	0.05	0.003		
The Stepping Stones Centre	635.815	6235.192	72	9.8	1.0	0.3	0.04	0.004		
Aboriginal Head Start	633.003	6235.697	87	8.0	0.8	0.5	0.07	0.003		
Child Development Centre	632.929	6236.112	68	7.5	0.7	0.4	0.06	0.003		
Keeginaw Pre-School	633.173	6235.032	109	12	1.0	0.6	0.08	0.004		
Totem Pre-School	635.236	6235.541	59	8.0	0.9	0.3	0.04	0.003		
Rise and Shine Clubhouse	635.020	6235.584	62	8.3	0.9	0.3	0.04	0.003		
Barney and Friends Family Daycare	643.482	6226.539	41	5.8	0.8	0.2	0.04	0.002		
Hudson's Hope Playschool	643.946	6225.250	36	4.9	0.6	0.2	0.04	0.002		

Table G.19 Maximum predicted concentrations of NO₂ and SO₂ at child care facilities $(in ug/m^3)$

Receptor ID	UTM Easting	UTM Northing	NO ₂			SO ₂		
Receptor ID	(km)	(km)	1-hour	24-hour	Annual	1-hour	24-hour	Annual
Fort St John Hospital and Health Care	633.715	6235.551	87	10	0.9	0.5	0.05	0.003
Fort St John Medical Clinic	633.889	6235.722	80	9.6	0.8	0.5	0.05	0.003
Fort St John Pharmacy and Wellness Centre	633.623	6235.735	83	9.3	0.8	0.4	0.05	0.003
The Taylor Medical Clinic	643.866	6225.592	37	5.1	0.7	0.2	0.04	0.002
ABC Medical Clinic	633.516	6235.725	85	9.1	0.8	0.4	0.05	0.003
North Peace Medical Clinic	633.554	6235.725	84	9.2	0.8	0.4	0.05	0.003

Table G.20 Maximum predicted concentrations of NO₂ and SO₂ at health care facilities (in $\mu q/m^3$)

Table G.21 Maximum predicted concentrations of NO₂ and SO₂ at senior care facilities

(in µg/m³)	-		_	_					
Receptor ID	UTM Easting	UTM Northing	NO ₂			SO ₂			
	(km)	(km)	1-hour	24-hour	Annual	1-hour	24-hour	Annual	
Heritage Manor III	633.568	6236.327	73	7.6	0.7	0.3	0.04	0.003	
Peace Lutheran Apt #1,	633.439	6236.439	72	7.5	0.6	0.3	0.04	0.003	
Peace Lutheran Apt #2,	633.517	6236.442	73	7.5	0.6	0.3	0.04	0.003	
The Sunset Home	633.588	6236.708	72	7.3	0.6	0.3	0.04	0.003	
North Peace Care Centre	633.381	6236.534	72	7.4	0.6	0.3	0.04	0.003	
Abbeyfield Houses of Fort St. John	635.602	6235.204	70	9.5	1.0	0.3	0.04	0.004	
New Senior Housing	633.553	6236.243	73	7.6	0.7	0.3	0.04	0.003	

Receptor ID	UTM Easting	UTM Northing			With Background		
	(km)	(km)	1-hour	8-hour	1-hour	8-hour	
Residence 1	630.981	6232.372	179	54	408	214	
Residence 2	630.756	6232.335	167	58	396	218	
Residence 3	630.717	6232.314	161	60	390	221	
Residence 4	630.581	6232.296	159	54	388	214	
Residence 5	630.552	6232.296	158	55	387	216	
Residence 6	630.247	6232.403	139	45	368	206	
Residence 7	634.997	6230.486	60	23	289	184	
Residence 8	634.862	6230.523	61	24	290	184	
Residence 9	635.041	6230.506	59	23	288	183	
Residence 10	635.124	6230.508	59	23	288	183	
Residence 11	634.535	6230.703	66	26	295	186	
Residence 12	634.579	6230.785	66	26	295	186	
Residence 13	634.743	6230.833	65	25	294	185	
Residence 14	634.840	6230.765	64	24	293	185	
Residence 15	634.898	6230.703	63	24	292	184	
Residence 16	634.982	6230.627	61	24	290	184	
Residence 17	635.045	6230.755	62	23	291	184	
Residence 18	635.042	6230.725	62	23	291	184	
Residence 19	635.072	6230.654	61	23	290	183	
Residence 20	635.123	6230.659	60	23	289	183	
Residence 20	635.138	6230.587	59	23	288	183	
Residence 22	630.252	6232.596	121	38	350	198	
Residence 22	633.547	6231.980	106	36	335	198	
Residence 23	633.549	6232.516	97	30	326	197	
			97	29	323		
Residence 25	633.590	6232.546	110	38		190	
Residence 26	633.545	6231.881	110	37	339 339	198 198	
Residence 27	633.547	6231.893					
Residence 28	634.090	6232.671	83	26	312	186	
Residence 29	634.047	6232.473	93	28	322	189	
Residence 30	634.132	6232.501	89	28	318	188	
Residence 31	633.822	6232.438	96	30	325	191	
Residence 32	633.703	6232.241	101	33	330	193	
Residence 33	633.970	6232.454	95	29	324	189	
Residence 34	632.469	6230.313	123	48	352	209	
Residence 35	632.227	6231.391	156	62	385	222	
Residence 36	630.438	6232.091	171	58	400	218	
Residence 37	631.858	6231.027	193	79	422	240	
Residence 38	631.693	6231.612	190	59	419	219	
Residence 39	633.385	6231.479	133	44	362	204	
Residence 40	634.217	6230.914	74	29	303	189	
Residence 41	635.205	6230.478	57	22	286	182	
Residence 42	634.888	6230.495	61	24	290	184	
Residence 43	631.729	6232.627	155	46	384	206	
Residence 44	631.892	6232.432	168	53	397	213	
Residence 45	632.827	6232.458	126	38	355	198	
Residence 46	633.108	6232.423	117	34	346	195	
Residence 47	633.417	6232.513	102	30	331	191	
Residence 48	630.233	6232.814	106	30	335	191	
Residence 49	630.237	6232.750	110	32	339	193	
Residence 50	630.223	6232.954	97	26	326	187	
Residence 51	630.236	6232.907	100	28	329	188	

Table G.22 Maximum predicted concentrations of CO at ground-truthed residences (in $\mu g/m^3$)

Residence 52	633.410	6233.370	80	25	309	186
Residence 53	633.348	6233.331	111	26	340	186
Residence 54	634.909	6233.462	90	19	319	180
Residence 55	634.900	6233.602	91	19	320	179
Residence 56	635.348	6233.713	64	17	293	177
Residence 57	629.555	6232.927	108	21	337	182
Residence 58	629.316	6232.906	99	21	328	181
Residence 59	629.323	6232.964	96	20	325	181
Residence 60	630.449	6232.305	154	62	383	222
Residence 61	635.088	6230.518	59	23	288	183
Residence 62	634.706	6230.715	64	25	293	185
Residence 63	634.632	6230.798	66	25	295	186
Residence 64	634.537	6230.925	69	26	298	187
Residence 65	634.738	6230.939	66	25	295	185
Residence 66	634.844	6230.924	65	25	294	185
Residence 67	634.799	6230.766	64	24	293	185
Residence 68	634.815	6230.761	64	24	293	185
Residence 69	634.889	6230.773	63	24	293	184
Residence 70	634.915	6230.769	63	24	292	184
Residence 71	634.844	6230.703	63	24	292	185
Residence 72	634.828	6230.713	64	24	293	185
Residence 73	634.951	6230.718	62	24	291	184
Residence 74	634.947	6230.768	63	24	292	184
Residence 75	635.008	6230.765	62	24	291	184
Residence 76	634.993	6230.715	62	24	291	184
Residence 77	635.076	6230.717	61	23	290	183
Residence 78	635.096	6230.718	61	23	290	183
Residence 79	635.089	6230.604	60	23	289	183
Residence 80	630.237	6232.630	118	36	347	197
Residence 81	628.453	6232.604	127	23	356	183
Residence 82	633.190	6230.482	94	37	323	197
Residence 83	633.355	6230.925	97	35	326	196
Residence 84	633.569	6230.686	83	32	312	192
Residence 85	635.202	6230.516	58	22	287	183
Residence 86	633.165	6232.660	110	32	339	192
Residence 87	630.279	6232.963	95	27	324	188

(in µg/n			Marile and F	5 I			
Receptor ID	UTM Easting	UTM Northing		Background	With Background		
•	(km)	(km)	1-hour	8-hour	1-hour	8-hour	
Non-residence 1	630.709	6228.334	339	116	568	277	
Non-residence 2	630.724	6228.349	342	120	571	280	
Non-residence 3	631.896	6230.979	244	80	473	240	
Non-residence 4	630.996	6232.371	181	55	410	215	
Non-residence 5	630.784	6232.310	161	64	390	224	
Non-residence 6	630.699	6232.333	160	57	389	217	
Non-residence 7	630.658	6232.313	179	91	408	251	
Non-residence 8	630.599	6232.308	159	71	388	231	
Non-residence 9	630.325	6232.338	155	52	384	212	
Non-residence 10	630.351	6232.358	147	50	376	211	
Non-residence 11	630.361	6232.357	147	51	376	211	
Non-residence 12	630.319	6232.360	145	50	374	210	
Non-residence 13	630.328	6232.360	146	50	375	210	
Non-residence 14	630.302	6232.348	147	50	376	210	
Non-residence 15	630.246	6232.343	152	49	381	209	
Non-residence 16	630.255	6232.364	145	48	374	208	
Non-residence 17	630.255	6232.349	148	49	377	209	
Non-residence 18	630.896	6232.415	162	53	391	213	
Non-residence 19	630.888	6232.417	161	53	390	213	
Non-residence 20	630.895	6232.422	161	52	390	213	
Non-residence 21	630.528	6232.328	155	54	384	215	
Non-residence 22	630.527	6232.347	154	53	383	213	
Non-residence 23	630.499	6232.316	157	58	386	219	
Non-residence 24	630.473	6232.305	155	69	384	229	
Non-residence 25	630.447	6232.321	162	56	391	216	
Non-residence 26	630.301	6232.359	144	49	373	210	
Non-residence 27	630.282	6232.385	141	47	370	208	
Non-residence 28	630.933	6232.456	162	51	391	211	
Non-residence 29	630.771	6232.361	159	55	388	215	
Non-residence 30	635.021	6230.444	58	23	287	183	
Non-residence 31	635.133	6230.463	58	22	287	183	
Non-residence 32	634.933	6230.465	60	24	289	184	
Non-residence 33	634.669	6230.722	65	24	209	185	
Non-residence 34	634.373	6230.747	70	27	294	187	
Non-residence 35	634.381	6230.747	70	27			
Non-residence 35	634.454		68	26	299	187 187	
	634.454	6230.786 6230.824		26	297 294		
Non-residence 37			65			185	
Non-residence 38	634.904	6230.735	63	24	292	184	
Non-residence 39	634.976	6230.724	62	24	291	184	
Non-residence 40	634.975	6230.734	62	24	291	184	
Non-residence 41	635.079	6230.582	60	23	289	183	
Non-residence 42	634.982	6230.433	59	23	288	183	
Non-residence 43	634.986	6230.434	59	23	288	183	
Non-residence 44	634.990	6230.433	59	23	288	183	
Non-residence 45	635.064	6230.733	62	23	291	184	
Non-residence 46	635.559	6230.553	55	20	284	181	
Non-residence 47	630.266	6232.703	111	35	340	195	
Non-residence 48	630.244	6232.580	122	38	351	199	
Non-residence 49	630.299	6232.482	135	44	364	204	
Non-residence 50	633.556	6232.393	97	31	326	192	
Non-residence 51	633.672	6232.107	99	34	328	194	

Table G.23 Maximum predicted concentrations of CO at ground-truthed non-residences $(in ug/m^3)$

Non-residence 52	633.541	6231.953	109	37	338	197
Non-residence 53	633.535	6231.964	109	37	338	197
Non-residence 54	631.988	6226.324	106	41	335	201
Non-residence 55	633.707	6232.186	101	33	330	193
Non-residence 56	634.245	6232.454	86	27	315	187
Non-residence 57	634.231	6232.707	80	25	309	185
Non-residence 58	634.232	6232.711	80	25	309	185
Non-residence 59	633.703	6232.491	92	30	321	190
Non-residence 60	633.718	6232.487	93	30	322	190
Non-residence 61	634.013	6232.543	90	28	319	188
Non-residence 62	634.065	6232.496	92	28	321	188
Non-residence 63	636.582	6232.572	53	18	282	178
Non-residence 64	634.044	6232.415	95	29	324	189
Non-residence 65	636.569	6232.484	54	18	283	178
Non-residence 66	634.109	6232.491	90	28	319	188
Non-residence 67	636.664	6232.507	53	18	282	178
Non-residence 68	634.117	6232.506	89	28	318	188
Non-residence 69	634.130	6232.514	89	20	318	188
Non-residence 70	636.698	6232.511	52	18	281	178
Non-residence 70	636.681	6232.499	52	18	282	178
Non-residence 71	636.727	6232.539	53	18	282	178
			52	17	281	178
Non-residence 73	636.788	6232.473			-	-
Non-residence 74	633.847	6232.489	95	29	324	189
Non-residence 75	633.760	6232.438	95	30	324	191
Non-residence 76	634.147	6232.482	89	28	318	188
Non-residence 77	633.694	6232.129	100	34	329	194
Non-residence 78	633.664	6232.127	99	34	328	194
Non-residence 79	633.683	6232.132	100	34	329	194
Non-residence 80	633.703	6232.133	100	34	329	194
Non-residence 81	633.712	6232.132	101	34	330	194
Non-residence 82	633.695	6232.140	100	34	329	194
Non-residence 83	634.318	6232.305	89	28	318	188
Non-residence 84	633.676	6232.153	100	34	329	194
Non-residence 85	633.702	6232.170	101	33	330	194
Non-residence 86	636.793	6232.437	52	17	281	178
Non-residence 87	636.794	6232.426	52	18	281	178
Non-residence 88	636.747	6232.422	52	18	281	178
Non-residence 89	636.776	6232.519	52	17	281	178
Non-residence 90	633.791	6232.477	94	30	323	190
Non-residence 91	633.665	6232.282	99	32	328	193
Non-residence 92	633.664	6232.298	99	32	328	192
Non-residence 93	633.685	6232.296	100	32	329	192
Non-residence 94	633.676	6232.289	100	32	329	192
Non-residence 95	633.706	6232.222	101	33	330	193
Non-residence 96	633.703	6232.200	101	33	330	193
Non-residence 97	633.730	6232.221	102	33	331	193
Non-residence 98	633.806	6232.494	94	30	323	190
Non-residence 99	633.805	6232.498	94	30	323	190
Non-residence 100	636.768	6232.602	54	18	283	179
Non-residence 101	633.805	6232.503	94	30	323	190
Non-residence 102	633.908	6232.447	97	29	326	189
Non-residence 103	633.911	6232.490	95	29	324	189
Non-residence 104	632.547	6230.574	110	45	339	206
Non-residence 105	631.982	6231.163	173	72	402	232
Non-residence 106	631.982	6231.127	174	72	403	233
Non-residence 107	631.960	6231.110	174	74	405	234

Non residence 108	632.131	6231.351	165	65	394	226
Non-residence 108 Non-residence 109	632.237	6231.408	156	61	394	220
Non-residence 110	630.192	6232.050	184	53	413	213
Non-residence 111	630.176	6232.008	193	54	413	215
				49		209
Non-residence 112	630.031	6232.003	220		449	
Non-residence 113	630.039	6231.965	222	50	451	211
Non-residence 114	630.433	6232.124	168	56	397	217
Non-residence 115	630.415	6232.072	172	58	401	218
Non-residence 116	630.397	6232.048	174	58	403	219
Non-residence 117	630.429	6232.027	177	60	406	220
Non-residence 118	630.394	6231.969	181	61	410	222
Non-residence 119	630.393	6231.980	180	61	409	221
Non-residence 120	630.419	6231.972	182	62	411	222
Non-residence 121	630.431	6231.946	184	63	413	223
Non-residence 122	630.345	6232.115	165	55	394	216
Non-residence 123	630.273	6232.059	176	55	405	215
Non-residence 124	630.296	6232.052	175	56	404	216
Non-residence 125	630.300	6232.083	170	55	399	215
Non-residence 126	630.256	6232.077	174	54	403	214
Non-residence 127	630.239	6232.054	181	55	410	215
Non-residence 128	628.501	6232.716	113	21	342	181
Non-residence 129	631.705	6231.574	187	61	416	222
Non-residence 130	633.145	6231.522	123	46	352	207
Non-residence 131	633.295	6231.506	132	44	361	205
Non-residence 132	633.349	6231.512	137	44	366	204
Non-residence 133	633.275	6231.506	130	45	359	205
Non-residence 134	633.386	6231.498	132	43	361	204
Non-residence 135	633.269	6230.441	92	36	321	197
Non-residence 136	633.237	6230.581	94	36	324	197
Non-residence 137	633.292	6230.470	92	36	321	196
Non-residence 138	633.261	6230.472	93	36	322	197
Non-residence 139	633.225	6230.449	92	36	321	197
Non-residence 140	633.391	6230.914	94	35	324	195
Non-residence 141	633.630	6230.661	82	32	311	192
Non-residence 142	633.628	6230.657	82	32	311	192
Non-residence 143	631.766	6232.355	188	63	417	224
Non-residence 144	631.411	6232.490	179	50	408	210
Non-residence 145	631.403	6232.484	180	50	409	211
				10		
Non-residence 146	631.876	6232.603	155	46	384	207
Non-residence 147 Non-residence 148	632.203	6232.437	180			
	632.427	6232.483	183	41	412	201
Non-residence 149	632.632	6232.445	139	39	368	200
Non-residence 150	632.430	6231.891	140	47	369	208
Non-residence 151	632.963	6232.611	120	35	349	195
Non-residence 152	632.828	6232.481	126	38	355	198
Non-residence 153	633.145	6232.700	111	32	340	192
Non-residence 154	633.134	6232.689	111	32	340	193
Non-residence 155	633.442	6232.703	98	28	327	188
Non-residence 156	633.084	6232.423	118	35	347	195
Non-residence 157	633.105	6232.405	117	34	346	195
Non-residence 158	633.046	6232.480	118	35	347	195
Non-residence 159	633.419	6232.447	102	31	331	192
Non-residence 160	633.452	6232.453	101	31	330	192
Non-residence 161	633.424	6232.451	101	31	330	192
Non-residence 162	633.127	6232.758	111	32	340	192
Non-residence 163	630.249	6232.842	103	30	332	190

Non-residence 164	630.298	6232.738	108	34	337	194
Non-residence 165	630.247	6232.782	107	32	336	192
Non-residence 166	634.386	6233.116	81	21	310	181
Non-residence 167	634.207	6232.732	80	25	309	185
Non-residence 168	635.335	6233.676	67	17	296	177
Non-residence 169	635.310	6233.690	68	17	297	177
Non-residence 170	636.056	6233.139	56	18	285	178
Non-residence 171	635.660	6233.183	68	18	297	179
Non-residence 172	635.581	6233.534	58	17	287	178
Non-residence 173	635.575	6233.206	73	18	302	179
Non-residence 174	635.529	6233.502	62	17	291	178
Non-residence 175	635.633	6233.267	68	19	297	179
Non-residence 176	635.687	6233.405	55	18	284	178
Non-residence 177	635.751	6233.348	56	18	285	178
			55	18		-
Non-residence 178	635.820	6233.359			284	178
Non-residence 179	630.258	6232.922	98	28	327	188
Non-residence 180	634.541	6233.203	83	20	312	181
Non-residence 181	633.385	6233.309	81	26	310	186
Non-residence 182	633.348	6233.268	84	26	313	186
Non-residence 183	633.503	6233.342	79	25	308	185
Non-residence 184	633.633	6233.221	78	25	307	185
Non-residence 185	634.933	6233.444	90	19	319	180
Non-residence 186	635.804	6233.334	55	18	284	178
Non-residence 187	633.576	6233.209	78	25	307	185
Non-residence 188	635.793	6233.323	56	18	285	178
Non-residence 189	635.790	6233.311	56	18	285	178
Non-residence 190	633.658	6233.135	78	25	307	185
Non-residence 191	635.803	6233.303	56	18	285	178
Non-residence 192	633.656	6233.119	78	25	307	185
Non-residence 193	635.749	6233.372	55	18	284	178
Non-residence 194	634.690	6233.086	81	21	310	181
Non-residence 195	635.608	6233.285	69	19	298	179
Non-residence 196	636.833	6232.745	51	17	280	177
Non-residence 197	633.745	6233.168	77	24	306	185
Non-residence 198	636.822	6232.743	51	17	280	177
Non-residence 199	633.760	6233.162	77	24	306	185
Non-residence 200	636.790	6232.734	51	17	280	178
Non-residence 201	636.777	6232.764	51	17	280	178
Non-residence 202	633.639	6233.221	78	25	307	185
Non-residence 203	633.658	6233.220	78	25	307	185
Non-residence 204	633.619	6233.125	79	25	308	185
Non-residence 205	634.432	6233.402	84	20	313	181
Non-residence 206	634.423	6233.360	83	20	312	181
Non-residence 200	634.340	6233.269	82	20	312	181
Non-residence 208	634.914	6233.603	91	19	320	179
Non-residence 209	634.903	6233.556	90	19	320	179
Non-residence 210	635.007	6233.494	90	19	319	179
Non-residence 211	635.007	6233.556	90	19	319	179
Non-residence 212	635.030	6233.644	89	19	318	180
Non-residence 213	635.234	6233.722	71	17	300	177
Non-residence 214	635.199	6233.691	79	18	308	178
Non-residence 215	636.133	6233.165	55	18	284	178
Non-residence 216	629.360	6232.774	108	23	337	183
Non-residence 217	629.356	6232.783	108	23	337	183
Non-residence 218	629.578	6232.895	110	22	339	182
Non-residence 219	629.226	6232.883	99	21	328	181

Non-residence 220	629.334	6232.855	102	22	331	182
Non-residence 221	629.324	6232.873	101	21	330	182
Non-residence 222	629.292	6232.864	101	21	330	182
Non-residence 223	629.279	6232.862	101	21	330	182
Non-residence 224	629.331	6232.925	98	21	327	181
Non-residence 225	629.345	6232.916	99	21	329	181
Non-residence 226	629.348	6232.935	99	21	328	181
Non-residence 227	633.401	6232.733	99	28	328	188
Non-residence 228	630.655	6232.303	161	61	390	221
Non-residence 229	630.407	6232.300	153	52	382	213
Non-residence 230	630.452	6232.324	156	54	385	214
Non-residence 231	630.360	6232.328	158	54	387	214
Non-residence 232	630.809	6232.413	157	52	386	213
Non-residence 232	630.679	6232.377	157	53	386	213
			56	22		182
Non-residence 234	635.280	6230.416			285	
Non-residence 235	634.753	6230.706	64	25	293	185
Non-residence 236	634.459	6230.807	68	26	297	187
Non-residence 237	634.485	6230.766	67	26	296	186
Non-residence 238	634.674	6230.781	65	25	294	185
Non-residence 239	634.719	6230.837	65	25	294	185
Non-residence 240	634.543	6230.948	69	26	298	186
Non-residence 241	634.915	6230.724	63	24	292	184
Non-residence 242	634.915	6230.654	62	24	291	184
Non-residence 243	635.018	6230.724	62	24	291	184
Non-residence 244	635.096	6230.655	60	23	290	183
Non-residence 245	635.128	6230.627	60	23	289	183
Non-residence 246	635.559	6230.527	55	20	284	181
Non-residence 247	630.258	6232.565	124	39	353	200
Non-residence 248	631.977	6226.320	106	40	335	201
Non-residence 249	633.954	6232.464	95	29	324	189
Non-residence 250	634.021	6232.502	93	28	322	188
Non-residence 251	636.675	6232.516	53	18	282	178
Non-residence 252	636.764	6232.524	52	17	281	178
Non-residence 253	633.791	6232.481	94	30	323	190
Non-residence 254	633.682	6232.260	100	32	329	193
Non-residence 255	633.808	6232.445	95	30	324	191
Non-residence 256	633.820	6232.470	95	30	324	190
Non-residence 257	631.968	6231.106	175	73	404	233
Non-residence 258	632.215	6231.407	450		387	222
Non-residence 259	630.179	6231.985	158	62 55	425	216
Non-residence 260			171	57	400	218
	630.455	6232.103				
Non-residence 261	630.434	6231.940	185	63	414	223
Non-residence 262	630.116	6232.674	123	31	352	191
Non-residence 263	628.548	6232.661	110	21	339	181
Non-residence 264	631.692	6231.654	193	56	422	217
Non-residence 265	633.277	6231.494	130	45	359	205
Non-residence 266	633.164	6230.500	95	37	324	198
Non-residence 267	633.210	6230.535	94	36	323	197
Non-residence 268	633.276	6230.498	93	36	322	196
Non-residence 269	633.220	6230.512	94	37	323	197
Non-residence 270	633.590	6230.696	83	32	312	192
Non-residence 271	634.866	6230.491	61	24	290	184
Non-residence 272	631.883	6232.606	155	46	384	207
Non-residence 273	632.540	6232.426	167	40	396	200
Non-residence 274	632.425	6231.891	140	47	369	208
Non-residence 275	633.140	6232.682	111	32	340	193

Non-residence 276	633.196	6232.449	114	33	343	194
Non-residence 277	630.243	6232.781	108	31	337	192
Non-residence 278	630.280	6232.975	94	27	323	187
Non-residence 279	635.385	6233.556	71	17	300	178
Non-residence 280	635.106	6233.424	89	19	318	179
Non-residence 281	635.812	6233.348	55	18	284	178
Non-residence 282	635.182	6233.689	80	18	309	178
Non-residence 283	636.388	6232.996	54	18	283	178
Non-residence 284	629.248	6233.007	93	20	322	181
Non-residence 285	629.176	6232.862	100	21	329	181
Non-residence 286	629.578	6232.917	109	22	338	182
Non-residence 287	629.256	6232.919	98	21	327	181

Receptor ID	UTM Easting (km)	UTM Northing	Without E	Background	With Background	
		(km)	1-hour	8-hour	1-hour	8-hour
Unknown Building 1	644.950	6225.018	17	6.7	246	167
Unknown Building 2	644.872	6225.507	18	6.6	247	167
Unknown Building 3	644.880	6225.504	18	6.6	247	167
Unknown Building 4	644.952	6225.002	17	6.7	246	167
Unknown Building 5	644.955	6224.971	17	6.7	246	167
Unknown Building 6	644.947	6224.943	17	6.7	246	167
Unknown Building 7	644.947	6224.925	17	6.7	246	167
Unknown Building 8	644.963	6224.933	17	6.6	246	167
Unknown Building 9	644.882	6225.060	17	6.7	246	167
Unknown Building 10	643.566	6225.463	21	7.5	250	168
Unknown Building 11	643.559	6225.463	21	7.5	250	168
Unknown Building 12	643.374	6225.135	21	7.7	250	168
Unknown Building 13	643.404	6225.133	21	7.7	250	168
Unknown Building 14	643.403	6225.138	21	7.7	250	168
Unknown Building 15	643.969	6223.120	15	6.2	244	167
Unknown Building 16	643.834	6224.638	20	7.4	249	168
Unknown Building 17	643.831	6224.618	20	7.4	249	168
Unknown Building 18	644.950	6225.063	17	6.6	246	167
Unknown Building 19	644.943	6225.062	17	6.7	246	167
Unknown Building 20	644.951	6225.052	17	6.6	246	167
Unknown Building 21	644.953	6225.057	17	6.6	246	167
Unknown Building 22	644.933	6225.059	17	6.7	246	167
Unknown Building 23	644.990	6224.918	17	6.6	246	167
Unknown Building 24	644.990	6224.939	17	6.6	246	167
Unknown Building 25	644.873	6225.014	17	6.7	246	167
Unknown Building 26	644.713	6224.856	18	6.9	247	167
Unknown Building 27	644.760	6224.826	18	6.8	247	167
Unknown Building 28	644.816	6224.832	17	6.8	246	167
Unknown Building 29	644.815	6224.853	17	6.8	246	167
Unknown Building 30	644.843	6224.892	17	6.8	246	167
Unknown Building 31	644.871	6224.825	17	6.7	246	167
Unknown Building 32	644.906	6224.940	17	6.7	246	167
Unknown Building 33	644.867	6224.969	17	6.7	246	167
Unknown Building 34	643.667	6225.359	21	7.5	250	168
Unknown Building 35	643.773	6225.267	21	7.4	250	168
Unknown Building 36	643.797	6225.227	21	7.4	250	168
Unknown Building 37	643.806	6225.168	20	7.4	249	168
Unknown Building 38	643.808	6225.162	20	7.4	249	168
Unknown Building 39	643.766	6225.177	21	7.5	250	168
Unknown Building 40	643.683	6225.204	21	7.5	250	168
Unknown Building 41	643.681	6225.221	21	7.5	250	168
Unknown Building 42	643.634	6225.271	21	7.5	250	168
Unknown Building 43	643.633	6225.252	21	7.5	250	168
Unknown Building 44	643.894	6223.384	16	6.5	245	167
Unknown Building 45	643.856	6223.461	16	6.6	245	167
Unknown Building 46	644.033	6223.096	15	6.2	244	166
Unknown Building 47	644.849	6225.100	18	6.7	247	167
Unknown Building 48	644.708	6225.309	18	6.8	247	167
Unknown Building 49	644.412	6224.131	17	6.9	246	167
Unknown Building 50	644.406	6224.149	17	6.9	246	167
Unknown Building 51	643.639	6225.491	21	7.5	250	168

Table G.24 Maximum predicted concentrations of CO at unknown buildings (in µg/m³)

Halmann Duildian 50	0.40,000	0005 400	04	7 5	050	400
Unknown Building 52	643.623	6225.483	21	7.5	250	168
Unknown Building 53	643.691	6225.415	21	7.5	250	168
Unknown Building 54	643.709	6225.375	21	7.5	250	168
Unknown Building 55	643.700	6225.363	21	7.5	250	168
Unknown Building 56	643.664	6225.368	21	7.5	250	168
Unknown Building 57	642.358	6232.697	20	7.0	249	167
Unknown Building 58	642.370	6232.697	20	7.0	249	167
Unknown Building 59	641.707	6232.306	21	7.9	250	168
Unknown Building 60	641.716	6232.294	21	7.8	250	168
Unknown Building 61	639.639	6231.988	30	11	259	171
Unknown Building 62	639.669	6231.968	30	11	259	171
Unknown Building 63	641.692	6232.162	22	7.9	251	168
Unknown Building 64	639.724	6231.971	29	11	258	171
Unknown Building 65	641.692	6232.158	22	7.9	251	168
Unknown Building 66	642.008	6232.583	21	7.4	250	168
Unknown Building 67	639.730	6231.945	30	11	259	171
Unknown Building 68	641.731	6232.165	22	7.8	251	168
Unknown Building 69	641.983	6232.575	21	7.5	250	168
Unknown Building 70	639.694	6231.927	30	11	259	171
Unknown Building 71	641.719	6232.146	22	7.8	251	168
Unknown Building 72	641.977	6232.585	21	7.5	250	168
Unknown Building 73	641.745	6232.141	22	7.8	251	168
Unknown Building 74	641.764	6232.131	22	7.7	251	168
Unknown Building 75	641.939	6232.450	21	7.5	250	168
Unknown Building 76	641.800	6232.154	22	7.7	251	168
Unknown Building 77	641.817	6232.160	22	7.7	251	168
Unknown Building 78	641.827	6232.134	22	7.6	251	168
Unknown Building 79	641.220	6232.063	24	8.2	253	169
Unknown Building 80	641.784	6232.059	22	7.7	251	168
Unknown Building 81	641.219	6232.071	24	8.2	253	169
Unknown Building 82	641.751	6232.050	22	7.8	251	168
Unknown Building 83	641.219	6232.085	24	8.2	253	169
Unknown Building 84	641.208	6232.134	23	8.2	252	169
Unknown Building 85	641.842	6232.556	21	7.7	250	168
Unknown Building 86	641.200	6232.134	24	8.2	253	169
Unknown Building 87	641.242	6232.144	23	8.2	252	168
Unknown Building 88	641.273	6232.106	24	8.1	253	168
Unknown Building 89	641.267	6232.081	24	8.1	253	168
Unknown Building 90	641.350	6232.123	23	8.0	252	168
Unknown Building 91	641.913	6232.471	21	7.6	250	168
Unknown Building 92	641.360	6232.149	23	8.0	252	168
Unknown Building 93	641.339	6232.148	23	8.1	252	168
Unknown Building 94	641.334	6232.133	23	8.1	252	168
Unknown Building 95	641.329	6232.136	23	8.1	252	168
Unknown Building 96	641.319	6232.130	23	8.1	252	168
Unknown Building 97	641.716	6232.361	21	7.9	250	168
Unknown Building 98	641.726	6232.330	21	7.8	250	168
Unknown Building 99	642.420	6232.706	20	6.9	249	167
Unknown Building 100	641.719	6232.315	21	7.8	250	168
Unknown Building 101	642.414	6232.697	20	6.9	249	167
Unknown Building 102	641.708	6232.314	20	7.9	249	168
Unknown Building 102	641.729	6229.020	31	8.7	260	169
Unknown Building 103	641.715	6229.020	31	8.8	260	169
Unknown Building 104	641.684	6229.037	32	8.8	261	169
Unknown Building 106	641.664	6229.057	32	8.9	261	169
Unknown Building 107	641.684	6229.052	32	8.8	261	169
UTIKHUWIT BUILUING TU/	041.004	0229.000	32	0.0	201	103

Unknown Building 108 641.698 6229.109 32	8.8	261	169
Unknown Building 109 641.689 6228.896 31	8.8	260	169
Unknown Building 110 641.669 6228.915 31	8.8	260	169
Unknown Building 111 641.657 6228.840 31	8.8	260	169
Unknown Building 112 641.665 6228.834 30	8.8	259	169
Unknown Building 113 644.398 6226.367 17	6.3	246	167
Unknown Building 114 643.881 6226.485 18	6.5	247	167
Unknown Building 115 644.029 6226.070 19	6.8	248	167
Unknown Building 116 644.017 6226.086 19	6.8	248	167
Unknown Building 117 642.838 6226.416 20	7.4	249	168
Unknown Building 118 642.945 6226.433 20	7.6	249	168
Unknown Building 119 642.936 6226.428 20	7.9	249	168
Unknown Building 120 642.888 6226.854 21	6.8	250	167
Unknown Building 121 642.854 6226.949 21	6.7	250	167
Unknown Building 122 643.847 6226.177 19	6.9	248	167
Unknown Building 123 643.840 6226.157 19	6.9	248	167
Unknown Building 124 643.865 6226.164 19	6.9	248	167
Unknown Building 125 643.882 6226.134 19	6.9	248	167
Unknown Building 126 643.897 6226.107 19	6.9	248	167
Unknown Building 127 643.902 6226.101 19	6.9	248	167
Unknown Building 128 643.599 6226.038 22	8.9	251	169
Unknown Building 129 643.616 6226.337 19	6.9	248	167
Unknown Building 130 643.663 6226.211 19	7.0	248	167
Unknown Building 131 643.697 6226.185 19	7.0	248	167
Unknown Building 132 643.719 6226.149 19	7.0	248	167
Unknown Building 133 643.736 6226.142 19	7.0	248	167
Unknown Building 134 643.744 6226.087 19	7.0	248	167
Unknown Building 135 643.748 6226.078 19	7.0	248	167
Unknown Building 136 643.753 6226.063 19	7.0	248	167
Unknown Building 137 641.735 6229.039 31	8.7	260	169
Unknown Building 138 643.909 6226.161 19	6.8	248	167
Unknown Building 139 643.834 6226.210 19	6.9	248	167
Unknown Building 140 643.384 6226.373 19	7.0	248	167
Unknown Building 141 643.418 6226.364 19	7.0	248	167
Unknown Building 142 642.743 6226.973 22	6.8	251	167
Unknown Building 143 642.768 6226.973 22	6.8	251	167
Unknown Building 144 642.672 6226.501 21	7.5	250	168
Unknown Building 145 642.676 6226.447 21	7.5	250	168
Unknown Building 146 643.764 6226.139 19 Unknown Building 147 643.755 6226.147 19	7.0	248	167
	7.0	248	167
	6.9	248	167
	7.0		
		248	167
Unknown Building 151 643.771 6226.180 19	6.9	248	167
Unknown Building 152 643.753 6226.187 19	6.9	248	167
Unknown Building 153 643.720 6226.203 19	7.0	248	167
Unknown Building 154 643.744 6226.210 19 Unknown Building 155 649.999 6299.475 49	6.9	248	167
Unknown Building 155 643.832 6226.175 19	6.9	248	167
Unknown Building 156 643.172 6226.037 20	7.8	249	168
Unknown Building 157 643.203 6225.978 20 Unknown Building 157 643.404 6226.400 40	7.5	249	168
Unknown Building 158 643.484 6226.166 19	7.2	248	167
Unknown Building 159 643.367 6226.160 20	7.3	249	168
Unknown Building 160 643.528 6226.061 20	7.2	249	168
Unknown Building 161 643.545 6226.046 20	7.4	249	168
Unknown Building 162 643.536 6226.004 20	7.3	249	168
Unknown Building 163 643.472 6226.157 19	7.2	249	167

Unknown Building 164	643.587	6226.050	20	7.4	249	168
Unknown Building 165	643.185	6226.306	20	7.3	249	168
Unknown Building 166	643.027	6226.363	20	7.3	249	168
Unknown Building 167	641.436	6228.659	30	9.2	259	169
Unknown Building 168	642.961	6226.254	20	7.5	249	168
Unknown Building 169	644.004	6226.153	19	6.8	248	167
Unknown Building 170	643.970	6226.198	19	6.8	248	167
Unknown Building 171	643.973	6226.201	19	6.8	248	167
Unknown Building 172	643.968	6226.204	19	6.8	248	167
Unknown Building 173	643.956	6226.214	19	6.8	248	167
Unknown Building 174	641.724	6227.960	25	8.3	254	169
Unknown Building 175	641.741	6227.953	25	8.3	254	169
Unknown Building 176	641.677	6228.058	25	8.5	254	169
Unknown Building 177	641.672	6228.099	25	8.5	254	169
Unknown Building 178	641.666	6228.095	25	8.5	254	169
Unknown Building 179	643.902	6226.128	19	6.9	248	167
Unknown Building 180	643.908	6226.118	19	6.9	248	167
Unknown Building 181	643.914	6226.110	19	6.9	248	167
Unknown Building 182	643.882	6226.168	19	6.9	248	167
Unknown Building 183	643.875	6226.180	19	6.9	248	167
Unknown Building 184	639.183	6227.195	34	12	263	173
Unknown Building 185	639.162	6227.197	34	12	263	173
Unknown Building 186	638.997	6227.336	32	13	261	173
Unknown Building 187	639.202	6227.203	33	12	262	173
Unknown Building 188	643.875	6226.185	19	6.8	248	167
Unknown Building 189	643.868	6226.221	19	6.8	248	167
Unknown Building 190	643.761	6226.051	19	7.1	248	167
Unknown Building 191	643.782	6226.058	19	7.0	248	167
Unknown Building 192	643.814	6226.081	19	7.0	248	167
Unknown Building 193	643.801	6226.090	19	7.0	248	167
Unknown Building 194	643.797	6226.103	19	7.0	248	167
Unknown Building 195	643.794	6226.117	19	7.0	248	167
Unknown Building 196	643.793	6226.138	19	7.0	248	167
Unknown Building 197	643.767	6226.128	19	7.0	248	167
Unknown Building 198	643.268	6226.302	19	7.2	248	168
Unknown Building 199	643.292	6226.276	19	7.2	248	168
Unknown Building 200	643.216	6226.347	20	7.2	249	168
Unknown Building 201	643.224	6226.078	20	7.4	249	168
Unknown Building 202	643.256	6226.097	20	7.4	249	168
Unknown Building 203	643.288	6226.117	20	7.4	249	168
Unknown Building 204	643.339	6226.147	20	7.3	249	168
Unknown Building 205	643.303	6226.155	20	7.3	249	168
Unknown Building 206	622.081	6236.050	15	3.4	244	164
Unknown Building 207	622.088	6235.938	15	3.5	244	164
Unknown Building 208	622.090	6235.975	15	3.5	244	164
Unknown Building 209	621.912	6235.742	15	3.5	244	164
Unknown Building 209	622.223	6235.981	16	3.6	245	164
Unknown Building 211	622.240	6235.939	16	3.6	245	164
Unknown Building 212	643.342	6232.985	17	6.0	245	166
Unknown Building 213	642.375		20	7.0	240	167
Unknown Building 213		6232.724				
	642.401	6232.723	20	7.0	249	167
Unknown Building 215 Unknown Building 216	643.329	6233.006	17	6.0 6.9	246 249	166 167
	642.416	6232.748	20			
Unknown Building 217	643.334	6233.011	17	6.0	246	166
Unknown Building 218	642.409	6232.755	20	6.9	249	167
Unknown Building 219	643.338	6233.028	17	6	246	166

	0.40.000	0000 740	00	7.0	0.40	407
Unknown Building 220	642.398	6232.749	20	7.0	249	167
Unknown Building 221	643.335	6233.152	18	6.1	247	166
Unknown Building 222	642.392	6232.749	20	7.0	249	167
Unknown Building 223	643.308	6233.164	18	6.1	247	166
Unknown Building 224	642.368	6232.771	20	7.0	249	167
Unknown Building 225	643.304	6233.215	18	6.1	247	166
Unknown Building 226	642.409	6232.760	20	6.9	249	167
Unknown Building 227	643.336	6233.207	18	6.1	247	166
Unknown Building 228	643.314	6233.263	18	6.1	247	166
Unknown Building 229	626.029	6235.450	29	6.9	258	167
Unknown Building 230	643.303	6233.282	18	6.1	247	166
Unknown Building 231	643.334	6233.306	18	6.1	247	166
Unknown Building 232	643.313	6233.331	18	6.1	247	166
Unknown Building 233	643.300	6233.326	18	6.1	247	166
Unknown Building 234	643.203	6233.002	18	6.1	247	166
Unknown Building 235	643.196	6232.991	18	6.1	247	166
Unknown Building 236	643.246	6232.984	18	6.1	247	166
Unknown Building 237	643.191	6232.960	18	6.1	247	166
Unknown Building 238	643.239	6232.950	18	6.1	247	166
Unknown Building 239	643.231	6232.911	18	6.1	247	166
Unknown Building 240	646.432	6233.677	12	3.5	241	164
Unknown Building 241	646.501	6233.734	12	3.5	241	164
Unknown Building 242	626.927	6234.611	37	10	266	171
Unknown Building 243	643.244	6232.893	18	6.1	247	166
Unknown Building 244	643.200	6232.869	18	6.1	247	166
Unknown Building 245	646.378	6233.687	12	3.6	241	164
Unknown Building 246	643.189	6232.851	18	6.1	247	166
Unknown Building 247	646.378	6233.691	12	3.6	241	164
Unknown Building 248	643.204	6232.854	18	6.1	247	166
Unknown Building 249	646.354	6233.688	12	3.6	241	164
Unknown Building 250	643.219	6232.853	18	6.1	247	166
Unknown Building 251	646.357	6233.709	12	3.6	241	164
Unknown Building 252	643.238	6232.844	18	6.1	247	166
Unknown Building 253	643.016	6232.721	18	6.3	247	167
Unknown Building 254	643.326	6232.944	17	6.0	246	166
Unknown Building 255	643.315	6232.981	17	6.0	246	166
Unknown Building 256	642.409	6232.764	20	6.9	249	167
Unknown Building 257	642.409	6232.768	20	6.9	249	167
Unknown Building 258	642.434	6232.773	20	6.9	249	167
Unknown Building 259	642.331	6232.741	20	7.1	249	167
Unknown Building 260	642.316	6232.728	20	7.1	249	167
Unknown Building 261	642.298	6232.715	20	7.1	249	167
Unknown Building 262	642.963	6232.725	18	6.3	243	167
			16	3.9		164
Unknown Building 263 Unknown Building 264	621.923	6235.219			245	
Unknown Building 265	621.936	6235.188	16	4.0	245	164
	621.979	6235.185	17	4.0	246	164
Unknown Building 266	625.563	6235.174	33	7.3	262	168
Unknown Building 267	625.767	6235.142	28	7.4	257	168
Unknown Building 268	627.442	6234.203	45	12	274	172
Unknown Building 269	626.401	6234.964	31	8.2	260	168
Unknown Building 270	626.381	6234.964	31	8.1	260	168
Unknown Building 271	626.452	6235.114	31	8.3	260	169
Unknown Building 272	626.453	6235.109	31	8.4	260	169
Unknown Building 273	626.630	6235.208	31	8.7	260	169
Unknown Building 274	626.467	6235.141	31	8.4	260	169
Unknown Building 275	626.461	6235.127	31	8.4	260	169

Unknown Building 276	626.495	6235.173	30	8.4	259	169
Unknown Building 277	626.425	6235.038	31	8.3	260	169
Unknown Building 278	621.996	6237.816	9.9	2.5	239	163
Unknown Building 279	622.012	6237.737	10	2.5	239	163
Unknown Building 280	622.051	6237.728	10	2.5	239	163
Unknown Building 281	622.041	6237.751	10	2.5	239	163
Unknown Building 282	622.038	6237.770	10	2.5	239	163
Unknown Building 283	622.001	6237.816	9.9	2.5	239	163
Unknown Building 284	622.656	6235.987	19	4.1	248	164
Unknown Building 285	625.996	6235.432	28	6.8	257	167
Unknown Building 286	625.963	6235.416	28	6.7	257	167
Unknown Building 287	625.953	6235.405	28	6.7	257	167

Receptor ID	UTM Easting	UTM Northing	Without I	Background	With Background	
•	(km)	(km)	1-hour	8-hour	1-hour	8-hour
Aboriginal Education Center	633.609	6235.391	42	14	271	174
Alwin Holland	633.853	6236.278	31	10	260	171
Baldonnel Elementary	642.961	6232.724	18	6.3	247	167
Bert Ambrose Elementary	633.698	6237.244	28	7.8	257	168
Bert Bowes Middle School	632.695	6235.420	44	14	273	175
Board Office	633.204	6236.129	32	9.5	261	170
Charlie Lake Elementary	626.866	6238.375	32	7.7	261	168
CM Finch Elementary	632.665	6236.509	39	8.5	268	169
Dr. Kearney Middle School	634.341	6236.419	30	10	259	171
Duncan Cran Elementary	635.468	6234.477	41	13	270	173
Ecole Central Elementary	633.100	6235.426	44	13	274	174
Facilities & Transportation	632.721	6235.227	48	16	277	177
Key Learning Centre	632.856	6235.390	45	14	274	175
North Peace Secondary	634.926	6234.932	35	12	264	172
Energetic Learning Campus	634.926	6234.932	35	12	264	172
Northern BC Distance Education	632.856	6235.390	45	14	274	175
Open Learning	632.856	6235.390	45	14	274	175
Robert Ogilvie Elementary	635.074	6235.572	28	10	257	171
Student Support Services	633.204	6236.129	32	9.5	261	170
Taylor Elementary	643.346	6227.033	19	6.2	248	167
Technology Services	633.204	6236.129	32	9.5	261	170
Upper Halfway Elementary	633.204	6236.129	32	9.5	261	170
Wonowon Elementary	633.204	6236.129	32	9.5	261	170

Table G.25 Maximu	m predicted concentration	ns of CO at schools (in µg/m ³)
-------------------	---------------------------	---

	UTM Easting	UTM Northing	Without E	Background	With Background	
Receptor ID	(km)	(km)	1-hour	8-hour	1-hour	8-hour
Chunkey Monkey Daycare	634.736	6235.411	31	11	260	172
Oscare Daycare/Oscare Tots	632.978	6235.501	43	13	272	173
The Zoo Daycare	634.054	6236.232	31	11	260	171
Little Kritters Daycare	624.101	6239.158	16	2.9	245	163
ABC & 123 Family Daycare	635.818	6234.246	44	14	273	174
Baby Bear Daycare	634.940	6234.929	35	12	264	172
Rascals	626.867	6238.356	33	7.7	262	168
Building Blocks Daycare	632.341	6235.672	49	13	278	173
Kidz Club	635.485	6234.438	42	13	271	174
Northern Lights College Daycare	632.978	6235.501	43	13	272	173
Little Bear Family Daycare	634.746	6235.411	31	11	260	172
Little Peanuts Family Daycare	636.173	6234.279	43	14	272	174
Little Pigs Family Daycare	633.130	6236.459	31	8.6	260	169
Nanny Norma's Daycare	633.845	6237.086	29	8.0	258	168
Pitter Patter Day Care	635.907	6234.821	37	12	266	172
Puddle Jumpers	633.845	6237.086	29	8.0	258	168
Seeds to Sow	634.341	6235.509	33	13	262	173
The Playground Family Daycare	635.666	6234.938	35	11	264	172
The Wiggles and Giggles Daycare	632.583	6235.781	43	11	272	171
TJ's Playhouse	634.310	6235.425	34	13	263	173
Tot's and Tikes Family Daycare	633.117	6236.197	30	8.9	259	169
The Stepping Stones Centre	635.815	6235.192	32	11	261	171
Aboriginal Head Start	633.003	6235.697	39	11	268	172
Child Development Centre	632.929	6236.112	34	9.2	263	170
Keeginaw Pre-School	633.173	6235.032	49	18	278	178
Totem Pre-School	635.236	6235.541	28	9.8	257	170
Rise and Shine Clubhouse	635.020	6235.584	28	10	257	171
Barney and Friends Family Daycare	643.482	6226.539	18	6.8	247	167
Hudson's Hope Playschool	643.946	6225.250	20	7.3	249	168

Table G.26 Maximum predicted concentrations of CO at child care facilities (in µg/m³)

Becenter ID	UTM Easting	UTM Northing	Without Ba	ackground	With Background	
Receptor ID	(km)	(km)	1-hour	8-hour	1-hour	8-hour
Fort St John Hospital and Health Care	633.715	6235.551	39	13	268	174
Fort St John Medical Clinic	633.889	6235.722	36	13	265	173
Fort St John Pharmacy and Wellness Centre	633.623	6235.735	37	12	266	173
The Taylor Medical Clinic	643.866	6225.592	20	7.3	249	168
ABC Medical Clinic	633.516	6235.725	38	12	267	173
North Peace Medical Clinic	633.554	6235.725	38	12	267	173

Table G.27 Maximum predicted concentrations of CO at health care facilities (in µg/m³)

Table G.28 Maximum predicted concentration	s of CO at senior care facilities (in µg/m ³)
--	---

Becomtor ID	UTM Easting	UTM Northing	Without E	Background	With Background	
Receptor ID	(km)	(km)	1-hour	8-hour	1-hour	8-hour
Heritage Manor III	633.568	6236.327	31	9.6	260	170
Peace Lutheran Apt #1,	633.439	6236.439	30	8.8	259	169
Peace Lutheran Apt #2,	633.517	6236.442	31	9.0	260	169
The Sunset Home	633.588	6236.708	30	8.5	259	169
North Peace Care Centre	633.381	6236.534	30	8.6	259	169
Abbeyfield Houses of Fort St. John	635.602	6235.204	32	10	261	171
New Senior Housing	633.553	6236.243	31	9.9	260	170

Site C Clean Energy Project

Volume 2 Appendix L Air Quality Technical Data Report

APPENDIX H

Glossary

Table of contents

1.0	Glossary of Terms	.H.1
2.0	References	.H.3

1.0 Glossary of Terms

Ambient air quality:

State of outdoor air quality from an environmental perspective, usually measured based on concentrations of contaminants in the air.

Air quality criteria:

Criteria, expressed as objectives and standards, developed by environmental and health authorities to provide guidance for environmental protection decisions. These criteria may be based on the effects of the contaminant on human health, wildlife, vegetation, and aesthetic qualities such as odour or visibility.

Ambient concentration:

Measure of the level of a contaminant in the atmosphere, typically at ground level, expressed as a mass per volume of air (e.g., micrograms per cubic metre) or volume of contaminant per volume of air (e.g., parts per billion).

Area source:

Stationary source of air pollutants that is too small and too numerous to require an authorization under Ministry of Environment laws. In emission inventories, this is a diffuse source of air contaminant emissions or a grouping of sources (e.g., home heating in a residential area). In dispersion modelling, it is treated as a two-dimensional source (or grouping of sources) of diffuse air contaminant emissions that emanates from a broad area (e.g., amalgamated emissions from mobile equipment and/or general activities in an open pit, fugitive dust from stockpiles).

Atmospheric stability:

Measure of resistance to vertical motion in the air.

Background:

A single value representing the representative background concentration of a criteria air contaminant.

Baseline:

Air quality conditions, in terms of emissions or ambient concentrations, associated with existing sources in the study area including all human-caused and natural sources.

Box plot:

Graphical summary representation of a frequency distribution, usually showing specified percentiles or other statistics of the frequency distribution.

Climate normals:

The arithmetic mean of climatological elements over 30 years used to describe the average climate conditions at a location.

Criteria air contaminant:

Air contaminants for which British Columbia or Canada have ambient air quality criteria (objectives or standards). Criteria air contaminants include total suspended particulates (TSP), particulate matter with a diameter less than 10 microns (PM_{10}), particulate matter with a diameter less than 10 microns (PM_{10}), particulate matter with a diameter less than 2.5 microns ($PM_{2.5}$), nitrogen dioxide (NO_2), sulphur dioxide (SO_2) and carbon monoxide (CO).

Deposition:

Deposition is the settling of particles or gases onto a surface. Wet and dry deposition refer to the settling with or without precipitation. Typical units for dustfall deposition are milligrams per metre squared per day.

Dispersion:

Process by which contaminants emitted from a source mix with ambient air and are transported downwind and thereby decrease in concentration the further they are measured from the source.

Dispersion modelling:

Mathematical simulation of contaminant dispersion in the atmosphere used to predict downwind concentrations of contaminants.

Dustfall:

The amount of particulate matter of all size classes that deposit onto a collection surface in a given amount of time.

Emission inventory:

Summary of emission rates of air contaminants from all point, area and mobile sources in a defined area, which could be the property of an industrial facility or a geopolitical boundary.

Emission rate:

The rate at which contaminants are released into the atmosphere from a source such as a stack. Typically expressed as a mass per unit time (e.g. grams per second or tonnes per year).

Emission factor:

Measure of the amount of contaminant discharged into the atmosphere, expressed as a quantity of contaminant released per unit activity associated with the release (e.g., kilograms per tonne of material handled, grams per vehicle kilometres travelled).

Frequency distribution:

Displays the number of occurrences per chosen intervals, which are usually mutually exclusive and complete, i.e. each occurrence falls into exactly one interval.

Fugitive dust:

Dust released into the atmosphere as a result of the mechanical disturbance of granular material exposed to air.

Heavy-duty vehicle:

Following the US Environmental Protection Agency's vehicle weight classification, a vehicle with a gross vehicle weight rating exceeding 8,500 lbs.

Land cover:

Physical cover on the earth's surface such as urban land, grassland, forested land, water, etc. Different land covers are associated with different geophysical parameters which in turn affect atmospheric dispersion and deposition processes.

Level A objective:

Provincial air quality objective. This level is the long-term goal for air quality and provides a basis for an anti-degradation policy for the unpolluted parts of the country, and for continuing development of control technology.

Level B objective:

Provincial air quality objective. This level is intended to provide adequate protection against effects on soil, water, vegetation, materials, visibility, personal comfort and well-being.

Level C objective:

Provincial air quality objective. This level denotes time-based concentrations of air contaminants beyond which, due to a diminishing margin of safety, appropriate action is required without delay to protect the health of the general public.

Light-duty vehicle:

Following the US Environmental Protection Agency's vehicle weight classification, a vehicle with a gross vehicle weight rating of up to 8,500 lbs.

Maximum acceptable objective:

Federal air quality objective. This level is intended to provide adequate protection against effects on soil, water, vegetation, materials, visibility, personal comfort and well-being.

Maximum desirable objective:

Federal air quality objective. This level is the long-term goal for air quality and provides a basis for an anti-degradation policy for the unpolluted parts of the country, and for continuing development of control technology.

Maximum tolerable objective:

Federal air quality objective. This level denotes time-based concentrations of air contaminants beyond which, due to a diminishing margin of safety, appropriate action is required without delay to protect the health of the general public.

Meteorological conditions:

Prevailing environmental conditions as they influence the prediction of dispersion.

Meteorological monitoring data:

Monitoring data of various meteorological elements including wind speed, wind direction, temperature, precipitation.

Mixing height:

The height above ground in which the lower atmosphere will undergo mechanical or turbulent mixing, producing a nearly homogenous air mass.

Mobile source:

A non-stationary source of air emissions such as a vehicle, backhoe, tractor, ship, train or airplane; typically associated with transportation, construction or agriculture

Off-road transportation:

Vehicle movements that do not take place on roads, rail, water, or in the air, for example operation of most on-site construction equipment, snowmobiles, recreational trail quads, and agricultural vehicles. Also classified as 'other mobile sources'.

Oxides of nitrogen:

In the context of the air quality TDR, the term 'oxides of nitrogen' is used interchangeably with 'nitrogen oxides' (NO_x) , referring to nitric oxide (NO) and nitrogen dioxide (NO_2) .

Particulate matter:

Complex mixture of extremely small particles and liquid droplets suspended in the Earth's atmosphere.

Percentile:

The nth percentile is defined as the value that is greater than or equal to the n% lowest values and equal or less than the (100-n)% highest values. For example, 1% of all data are less than or equal to the 1st percentile. The median is the value that separates the lower and the upper half of all values and therefore is equal to the 50th percentile.

Photolysis:

Chemical reaction in which a compound is decomposed after absorbing a photon.

Point source:

In emission inventories, an industrial facility operating under an air quality permit or reporting emissions to a regulatory authority. In dispersion modelling, any single identifiable source of pollution from which contaminants are discharged (e.g., a stack).

Precursor:

Compound that participates in a chemical reaction that produces another compound.

Prognostic meteorological model:

A model that solves time-dependent equations of atmospheric circulation to predict future or simulate past meteorological conditions in an area.

Receptor:

A discrete point at which ambient concentrations and/or depositions are predicted in a dispersion model. Receptors can be specified as a grid of discrete points over an area or as individual points representing residences and other sensitive receptors.

Sulphur oxides (SO_x):

Refers to any of the following classes of sulphur and oxygen containing compounds: lower sulphur oxides (S_nO , S_7O_2 , S_6O_2), sulphur monoxide (SO), sulphur dioxide (SO₂), sulphur trioxide (SO₃), and higher sulphur oxides (SO_y, 3<y≤4).

Surface roughness length:

A characteristic length of individual roughness elements that disturb air flow over the Earth's surface. It depends on the characteristics of individual roughness elements (e.g. size, geometry, permeability, and flexibility) and their arrangement relative to the mean wind.

Surface station:

A meteorological monitoring station that measures meteorological elements representative of ground-layer weather conditions, below an inversion.

Topography:

Surface shape and features of the Earth.

Total suspended particulate:

Particles less than approximately 100 microns (μ m) in diameter that typically remain suspended in the air for some time.

Up-slope or down-slope flow:

Air movement up or down a slope caused by temperature differences between near-surface air over a slope and the adjacent lower terrain.

Up-Valley or down-valley flow:

Air movement in a valley caused by larger-scale flows being forced to follow the elongated topography of a valley (channelling) or by horizontal pressure gradients, which in turn are caused by temperature differences between a valley and adjacent areas.

Volume source:

A three-dimensional source (or grouping of sources) of diffuse air contaminant emissions that emanates from a point (e.g. fugitive dust from an isolated activity, emissions from a specific vent or window).

Wind rose:

A bar chart in polar format used to depict the frequency of occurrence of various wind speed classes and wind directions.

2.0 References

Nakićenović, N., and R. Swart (eds.), 2000. Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599 pp.

http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/34_145_93

http://www.fao.org/docrep/003/X0596E/x0596e01e.htm