TABLE OF CONTENTS

1 List of Tables .. i
2 List of Figures .. i
3 Glossary ... ii
4 1 Objective and Scope... 1
5 2 Normal Reservoir Operating Constraints ... 1
6 3 Operation Model Description .. 2
7 3.1 Hydro Simulation Model (HYSIM) .. 3
8 3.2 Generalized Optimization Model (GOM) .. 3
9 4 Model Inputs and Assumptions .. 5
10 4.1 Streamflow Records ... 6
11 5 Summary of Results .. 7
12 5.1 Site C Operations ... 7
13 5.1.1 Site C Reservoir Releases ... 7
14 5.1.2 Site C Reservoir Levels .. 9
15 5.1.2.1 Reservoir Level Scenario Analysis .. 9
16 5.1.3 Expected Frequency of Site C Spillway Discharges ... 10
17 6 Closure .. 11

List of Tables

Table 1 Assumed Normal Reservoir Operating Constraints ... 2
Table 2 Summary of Model Parameters and Assumptions ... 5
Table 3 Streamflow Records Periods ... 6

List of Figures

Figure 1 Annual and Seasonal Site C Reservoir Release Duration Curve (60-year GOM Model Results) ... 8
Figure 2 Site C Spills Modelled Using GOM (Re-operated to limit inflow foresight to one month) ... 11
Abbreviations and Acronyms

1. GOM .. Generalized Optimization Model
2. HYSIM ... Hydro Simulation Model
3. WUP .. Water Use Plan

Glossary

1. Water Year A water year is a term commonly used in hydrology to describe a time period of 12 months between October 1st of one year and September 30th of the next. The water year is designated by the calendar year in which it ends.
2. Heavy Load Hours Heavy load hours in a month are those between 6:00 AM and 10:00 PM Monday through Saturday excluding holidays.
3. Light Load Hours Light Load Hours in a month are those between 10:00 PM and 6:00 AM, all day Sunday and holidays.
4. Electricity Self-Sufficiency As prescribed under the Clean Energy Act, amended Electricity Self-Sufficiency Regulation and amended Special Direction #10.
5. Duration Graph A duration graph is a graphical summary of data which shows the percent of time that the data values would equal or exceed the corresponding value indicated on the graph axis.
6. Freshet Freshet is the runoff resulting from melting of winter snow and ice during the spring and early summer.
1 OBJECTIVE AND SCOPE

This report summarizes the studies carried out by BC Hydro Generation Resource Management in support of the environmental assessment for the Site C Clean Energy Project (the Project). The objective of these studies was to characterize the reservoir releases to the Peace River under two different future operating scenarios: i) the first scenario characterizes the releases from the Dinosaur Reservoir in a future which does not include the Project and ii) the second scenario characterizes releases from the Site C reservoir in a future which includes the Project. The characterization of reservoir releases was achieved through the simulation of possible future operations based on a 60-year period of historical inflows from 1 October 1940 to 30 September 2000 (i.e., Water Years\(^1\) 1941 to 2000). In addition, the estimated frequency and range of water levels for the Site C reservoir were supplemented by a scenario analysis to assess the sensitivity of reservoir operation to a future system load/resource balance which is more generation resource constrained than that assumed in the 60-year simulation period.

The hydraulic routing of reservoir releases from each of the above operating scenarios to points further downstream on the Peace River and the description of the hydrologic regime during the construction phase of the Project are discussed in Volume 2 Section 11.4 Surface Water.

2 NORMAL RESERVOIR OPERATING CONSTRAINTS

The operation of a hydroelectric facility must adhere to the facility-specific physical and regulatory constraints including reservoir level ranges, maximum turbine releases, and minimum flow requirements. The ranges of normal reservoir levels and release constraints assumed in simulating the future operation of BC Hydro’s existing facilities on the Peace River and, if it proceeds, the Project are provided in Table 1.

\(^1\) A water year is a term commonly used in hydrology to describe a time period of 12 months between October 1\(^{st}\) of one year and September 30\(^{th}\) of the next. The water year is designated by the calendar year in which it ends.
Table 1 Assumed Normal Reservoir Operating Constraints

<table>
<thead>
<tr>
<th></th>
<th>Normal Reservoir Levels (m)</th>
<th>Normal Flow Releases (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>Williston Reservoir</td>
<td>672.08</td>
<td>654.41(a)</td>
</tr>
<tr>
<td>Dinosaur Reservoir</td>
<td>502.92</td>
<td>500.00</td>
</tr>
<tr>
<td>Site C Reservoir</td>
<td>461.80</td>
<td>460.00</td>
</tr>
</tbody>
</table>

Notes:

(a) Williston Reservoir minimum level is variable based on a formula under the Peace Water Use Plan (WUP) which permits a lower minimum reservoir level under certain system water supply conditions and with Water Comptroller approval. The WUP anticipates that this normal minimum level may be reduced to 652.3 m once certain conditions have been met.

(b) Depending on final design, the Site C maximum turbine discharge capability is expected to be within +/- five per cent of that assumed in this study.

(c) Minimum flow requirement as measured in the vicinity of the Water Survey of Canada Station 07EF001, Peace River at Hudson Hope.

(d) Minimum flow for the Project is discussed in Volume 2 Section 11.4 Surface Water.

3 OPERATION MODEL DESCRIPTION

BC Hydro operates its generation system to maximize the long-term expected net revenue from operations and to manage risks associated with serving the BC domestic load by optimizing the use of generation resources with available market opportunities while adhering to operating requirements. While the operation of all generation resources are coordinated to meet this overall objective, the large size (in both energy and capacity) of the existing facilities on the Peace and Columbia basin relative to total system demand dictates a much higher level of coordination between these two basins. The addition of a major resource such as the Site C generating station on the Peace River could influence how each facility on the Peace and Columbia systems are coordinated. To characterize the future operation of the Peace River facilities with or without the Project, it is therefore necessary to use models that can account for this inter-basin coordination.

BC Hydro has extensive experience in the use of the Hydro Simulation Model (HYSIM) and the Generalized Optimization Model (GOM) for planning purposes. These proprietary models were used to predict operational influence on reservoir releases of Revelstoke Unit 5 and Mica Units 5 and 6 projects in support of their respective environmental effects.
assessments. They were also used to evaluate operating alternatives in support of BC Hydro’s Columbia and Peace River Water Use Plans.

For this study, the HYSIM and GOM models were used to simulate a range of possible future reservoir releases to the Peace River under two different operating scenarios: one with the Project and the other without the Project. HYSIM was used first to simulate the monthly operation of BC Hydro’s generation system over the 60-year study period. GOM was subsequently used to optimize the hourly operation of the hydropower system, guided by the month-end storage targets produced by HYSIM for the Williston and Kinbasket reservoirs (the two major storage reservoirs of the integrated hydroelectric generation system). GOM results provide the basis for expected reservoir levels and the expected reservoir releases, with and without the Project, across different historical inflow sequences.

3.1 Hydro Simulation Model (HYSIM)

The HYSIM model is a monthly simulation model of the integrated BC Hydro electric generation system with limited foresight. The model simulates the system sequentially at a one month time-step given inputs of inflow, electricity load and prices during that month. It includes detailed hydraulic simulation of the hydro system as well as operating rules derived under the Columbia River Treaty operating plans to guide operations of the Columbia River facilities. For a given load and resource portfolio, the model determines the most economic dispatch of the generating system subject to fixed operating constraints (i.e. dam safety, physical capability, flood and ice control, regulatory requirements) across a historical sequence of inflows and subject to external market opportunities. The external markets are represented by heavy and light load hour\(^2\) energy prices and limited by the capacity ratings of transmission lines connecting the BC Hydro system to neighboring systems in the United States and Alberta.

As a monthly time-step model, HYSIM can only be used to address constraints on a monthly time resolution. The outputs from the model include: end-of-month reservoir elevations and reservoir storage contents, monthly average energy production, powerhouse and spill discharges, and electricity trade. The results do not reflect any variability within the month beyond splitting electricity trade activities into heavy and light load periods.

3.2 Generalized Optimization Model (GOM)

GOM is a system optimization model which uses deterministic linear programming modelling techniques to solve for the optimal operating conditions, subject to physical and

\(^2\) Heavy load hours in a month are those between 6:00 AM and 10:00 PM Monday through Saturday excluding holidays. Light load hours are the rest of the hours in that month. This split is important because electricity trades are typically made in heavy and light load hour blocks and the electricity prices are typically different.
operating constraints. The model can operate with a variable time-step down to one hour increments. The GOM model optimizes the operation of the hydropower system to meet BC Hydro electrical system loads while seeking to maximize the operational value of the generating resources subject to dam safety requirements, physical capability, flood and ice control, regulatory requirements and Columbia River Treaty operational requirements. The optimal operating conditions are further subject to transmission line limits on electricity trade with the United States and Alberta markets.

GOM assumes perfect foresight of parameters such as loads, market prices, and inflows for the time period being modelled. In order to limit the influence of perfect foresight, GOM must adhere to the year-end storage targets for the Williston and Kinbasket reservoirs as modelled by HYSIM, while the month-end storages for these reservoirs are allowed to deviate only slightly (0.46 m for Williston Reservoir and 1.65 m for Kinbasket Reservoir) from HYSIM targets for the optimization of within-month operation.

For this study, GOM was run with a one hour time-step, one water year at a time, to capture the variability in inflows, loads and prices within months and days. Inputs included the domestic load and available generating resources for each time step in the studied year (2028-2029 as shown in Table 2) along with their operating characteristics, such as operating and flow constraints, unit efficiency curves and storage and tailrace characteristics. The market price of electricity was used to determine whether it is more economical to store water or to draw down the BC Hydro system reservoirs to meet load requirements, and to engage in electricity market trade.

GOM determines optimal reservoir elevations and plant discharges and provides a proxy for hourly hydro system operations. The GOM model is not influenced by subjective bias in that it determines optimal reservoir releases based solely on the given inputs and system configuration. This characteristic, along with the capability to run in an hourly time-step resolution, makes GOM well suited to assess operational changes resulting from two or more operating scenarios. Comparison of GOM results from different operating scenarios can indicate the expected changes in reservoir releases between scenarios, which was the primary objective of this study.

By simulating operations over historical inflow sequences, GOM output provides a range of possible future operations under different scenarios. The model output is not intended to represent a chronological forecast of actual operations. Consequently, comparisons between the GOM model results for different scenarios should not be conducted on an hour-to-hour or daily basis because the time series are intended to represent a range of possibilities rather than a representation of an occurrence at a fixed point in time. It is appropriate, however, to compare scenarios using duration/frequency curves or other statistical metrics.
4 MODEL INPUTS AND ASSUMPTIONS

The key parameters and assumptions associated with the HYSIM and GOM models used to simulate and optimize, respectively, the operations of the BC Hydro coordinated generation system for scenarios with and without the Project is presented in Table 2.

Table 2 Summary of Model Parameters and Assumptions

<table>
<thead>
<tr>
<th></th>
<th>HYSIM</th>
<th>GOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model type</td>
<td>Simulation</td>
<td>Linear programming optimization</td>
</tr>
<tr>
<td>Time step</td>
<td>Monthly</td>
<td>Hourly</td>
</tr>
<tr>
<td>Foresight</td>
<td>Limited foresight (one month)</td>
<td>Perfect foresight within one water year (Oct to Sep) but guided by month-end storage targets from HYSIM</td>
</tr>
<tr>
<td>Study year (electrical load/resource Portfolio)</td>
<td>2028/2029</td>
<td>2028/2029</td>
</tr>
<tr>
<td>Load forecast and shape</td>
<td>Corporate forecast (Monthly)</td>
<td>Corporate forecast (Monthly), shaped hourly based on historical load shape</td>
</tr>
<tr>
<td>Market price and shape</td>
<td>Corporate forecast (Monthly for High Load Hours and Low Load Hours)</td>
<td>Corporate forecast with hourly variability based on typical weekly price patterns</td>
</tr>
<tr>
<td>Resources</td>
<td>Electricity self-sufficiency³ (under average water conditions, no insurance energy)</td>
<td>Electricity self-sufficiency (under average water conditions, no insurance energy)</td>
</tr>
<tr>
<td>Planned outages</td>
<td>Averaged availability for each month</td>
<td>Daily, based on average annual maintenance needs</td>
</tr>
<tr>
<td>Constraints</td>
<td>Physical, operational, dam safety, regulatory, Columbia River Treaty (monthly resolution)</td>
<td>Physical, operational, dam safety, regulatory, Columbia River Treaty (hourly or longer resolution)</td>
</tr>
<tr>
<td>Optimized reservoir storage</td>
<td>Williston Reservoir, Treaty, Non-Treaty Storage in Kinbasket Reservoir, and flex between Kinbasket Reservoir and Arrow Lakes Reservoir</td>
<td>Williston Reservoir, Dinosaur Reservoir, Site C Reservoir, Kinbasket Reservoir, Revelstoke Reservoir and Arrow Lakes Reservoir</td>
</tr>
<tr>
<td>Intended use</td>
<td>End of month reservoir storage contents and Columbia River Treaty discharge to the United States for each water year for GOM optimizations</td>
<td>Energy and shaping impacts, hourly reservoir elevations, plant generation, and discharges</td>
</tr>
</tbody>
</table>

³ As prescribed under the Clean Energy Act, the amended Electricity Self-Sufficiency Regulation and amended Special Direction #10.
For the operating scenario without the Project, the system load was reduced by the amount of firm energy that the Project would have produced. This avoids the need to select a specific alternate resource in place of the Project so that the remaining resource balance could match the operating scenario that included the Project. This approach eliminates, to the extent possible, the operational changes that could have otherwise resulted from the selection of different alternative resources in place of the Project.

For the operating scenario with the Project, downstream ice control flow constraints were assumed to be transferred from Peace Canyon to the Site C generating station. Details on ice control flow objectives and constraints on the Peace River are presented in Volume 2 Appendix G Downstream Ice Regime Technical Data Report.

4.1 Streamflow Records

Prior to undertaking the HYSIM/GOM operation studies, a review of the availability and quality of streamflow records on the Peace River upstream of the Site C dam site was completed, as this is an important input to the models. The review considered both gauged streamflow records as well as those resulting from past data extension efforts. Based on this review, best available series of continuous streamflow data were compiled. The periods of continuous streamflow record for the Peace River at each location compiled through this data review are shown in Table 3.

<table>
<thead>
<tr>
<th>Drainage</th>
<th>Monthly Data Years</th>
<th>Daily Data Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Williston Reservoir</td>
<td>1928 to 2010</td>
<td>1957 to 2010</td>
</tr>
<tr>
<td>Dinosaur Reservoir</td>
<td>1928 to 2010</td>
<td>1964 to 2010</td>
</tr>
<tr>
<td>Site C Reservoir (local)</td>
<td>1928 to 2010</td>
<td>1964 to 2010</td>
</tr>
</tbody>
</table>

System wide studies using HYSIM and GOM require a consistent set of inflows as well as Columbia River Treaty operations for the modelling period. Currently, the Columbia River Treaty planning studies are only performed using historical streamflow from water years 1941 to 2000. This range is the extent of the inflow and flood control data that have been approved by the Columbia River Treaty Operating Committee of both the United States and Canada at the time the HYSIM and GOM studies for the Project were conducted. Accordingly, these studies were performed using this 60-year historical inflow sequence. This period of streamflow provides a representative sample of system inflow conditions ranging from 80 per cent of average during the 1944 water year to 122 per cent of average during the 1976 water year.
For periods where the available streamflow time resolution is limited to monthly data, daily values were assumed to equal the monthly value without further adjustments. No within-day variations in streamflows were applied, i.e., hourly streamflows were assumed to equal daily values for all periods.

5 SUMMARY OF RESULTS

The GOM output provides simulated hourly reservoir releases to the Peace River for the two operating scenarios, with and without the Project, over a 60-year inflow sequence. These results were provided as the basis for further analyses (e.g. hydraulic routing) of downstream changes, the results of which are described in Section 11.4 of the Environmental Impact Statement and Volume 2 Appendix D Surface Water Regime Technical Memos, Part 2 Downstream Flow Modelling (1D). A summary of predicted Site C reservoir releases and reservoir levels are provided below.

5.1 Site C Operations

5.1.1 Site C Reservoir Releases

The operation of the Site C generating station would be coordinated with the operation of existing facilities upstream on the Peace River as well as other available system resources to meet provincial demand for electricity in a safe, reliable, and efficient manner. Accordingly, Site C reservoir releases follow the same general pattern as the provincial demand for electricity. Generally the pattern is higher during the winter and lower during the summer on a seasonal basis, higher during weekdays and lower during weekends on a weekly basis, and higher during daylight hours and lower during late night hours on a daily basis.

A duration graph\(^4\) of the Site C reservoir releases on an annual and seasonal (winter, spring freshet\(^5\) and summer) basis, over the 60-year simulation period is provided in Figure 1. The seasons are defined as follows:

- Winter: November 15 to February 15
- Freshet: May 1 to July 15
- Summer: July 16 to September 30

\(^4\) A duration graph is a graphical summary of data which shows the per cent of time that the data values would equal or exceed the corresponding value indicated on the graph axis.

\(^5\) Freshet is the runoff resulting from melting of winter snow and ice during the spring and early summer.
The volume of reservoir releases from the Site C reservoir would typically be highest during the winter months when increased generation is needed to meet high system loads. In addition, there would be limited opportunity to decrease releases during light load hours over the winter due to ice control flow requirements. The volume of reservoir releases is typically lowest during the spring freshet due to low demand and because generation during this period has the lowest financial value due to high generation from non-dispatchable resources such as run-of-river hydro. On an annual basis, Site C reservoir releases would be expected to be at the normal minimum flow (see Table 1) for approximately 20 per cent of the time. The maximum reservoir release over the 60-year simulation period reached 2,750 m3/s which includes both turbine and spill releases.

The normal ranges of reservoir releases to the Peace River under a future operating scenario with the Project are well characterized by the GOM model over the 60-year simulation period. However, because the GOM model assumes perfect foresight of inflows, spills which occur infrequently are likely under-represented by the modelled results. A discussion on alternate approaches to quantify the frequency and magnitude of spills from the Project is provided in Section 5.1.3 of this report.
5.1.2 Site C Reservoir Levels

The simulated operation of the Project shows that the Site C reservoir would be operated within the top 0.6 m, between elevations 461.8 and 461.2 m, over 99 per cent of the time. Similarly, daily reservoir level fluctuations would be less than 0.6 m over 99 per cent of the time. The use of the full 1.8 m normal reservoir operating range, between elevations 461.8 and 460.0 m, would still be required, but the duration of time the reservoir is drafted to the lower levels would be less than 1 per cent of the time. For example, the Site C reservoir would be drawn down in order concentrate generation into heavy load hours to maximize the value of generation. Also, the reservoir would be drawn down if high local inflows are forecasted in order to avoid spill or to maintain ice control flow or minimum flow requirements when it is uneconomic to release additional flows from Peace Canyon.

The GOM model results described above simulate how the Site C reservoir would be operated assuming future generation resource development, including the Project, kept pace with load growth. However, if a more generation constrained load/resource balance develops, the frequency with which the Site C reservoir would need to be drafted could increase. Such a scenario could materialize if future generation resource development is delayed, load growth exceeded forecast, or transmission capacity to external markets is expanded.

A discussion on an approach to analyse the sensitivity of Site C reservoir levels to a more generation constrained future is provided in Section 5.1.2.1 of this report.

5.1.2.1 Reservoir Level Scenario Analysis

A scenario analysis, independent of the GOM study, was used to evaluate the sensitivity of Site C reservoir levels in an alternate future where generation resources would be more constrained such that the Project would be heavily relied upon to meet system load requirements. This scenario analysis assumed the Peace system would be operated under the following conditions:

- System resources are constrained such that the optimal system operation would make full use of the Project generation flexibility during heavy load hours.
- Operational foresight related to markets and inflows is limited to one week.

Under this scenario, it is during the winter period that the operation of the Site C reservoir could deviate from that simulated by the GOM model. The scenario analysis indicates that, in winter, under a generation constrained load/resource balance, the duration that the Site C reservoir would be operated within the top 0.6 m (between elevations 461.8 and 461.2 m) could decrease from 99 per cent of time to about 83 per cent of time. The duration that the reservoir would be operated within the mid 0.6 m of the normal range (between elevations 461.2 and 460.6 m) and bottom 0.6 m of the normal range (between elevations 460.6 and 460.0 m) could increase from less than one percent to about 11 per cent of time and 6 per
The duration that daily reservoir level fluctuations would be less than 0.6 m would decrease from over 99 per cent of time to about 60 per cent. It is estimated that the daily fluctuation of the reservoir would exceed 1.0 m for about 25% of the time.

The above sensitivity analysis confirms that even if a generation constrained future develops, the Site C reservoir would continue to operate at relatively high levels (within the top 0.6 m, about 83 per cent of time) in order to maximize the value of power production.

5.1.3 Expected Frequency of Site C Spillway Discharges

The Site C spillway facilities are designed to safely pass a design flood that is orders of magnitude greater than what the hydroelectric facility would normally be expected to discharge on a day to day or year to year basis. The design flood and spillway capacity are described in the Environmental Impact Statement Volume 1 Section 4 Project Description.

At the other end of the spectrum, lower magnitude spills, though infrequent, are expected under normal operations and could occur at any time. These events are driven by normal operating requirements including uncertainties associated with inflows, unit outage, transmission restrictions, electricity market prices and system energy needs.

The combined hydraulic capacity of the proposed Site C generating station (six generating units) would be roughly twenty five per cent greater than the hydraulic capacity at G.M. Shrum or Peace Canyon. The turbine discharge characteristics, along with a normal storage volume range that is roughly six times greater than Dinosaur Reservoir would provide the Project with operating flexibility to reduce the occurrence of spills.

As indicated in Section 5.1.1 of this report, because the GOM model assumes perfect foresight of inflows, the model would tend to draw down the Site C reservoir ahead of any high inflows that could cause spills. However, because in reality inflow forecasts are never perfect, spills are likely under-represented by GOM. To address this potential spill under-representation, a partial re-operation of the GOM model was undertaken to limit the inflow foresight of the model to one month. For each of the years for which the monthly HYSIM model resulted in either spills at the Project or surplus energy in the system, the GOM model was re-operated while limiting inflow foresight to one month. This re-operation resulted in spills at the Site C dam in five years over the 60-year inflow sequence. The magnitude and duration of these spills are shown in Figure 2.
Figure 2 Site C Spills Modelled Using GOM (Re-operated to limit inflow foresight to one month)

While limiting the inflow foresight to one month enabled GOM to better predict occasional spills at the Site C dam, this foresight limitation was not applied for predicting normal reservoir releases because the shaping of reservoir releases between months, which would be facilitated by the forecast of seasonal inflow patterns spanning several months, is an important determinant in the actual operation of the Williston Reservoir.

6 CLOSURE

This report was prepared and reviewed by the undersigned.

Prepared by: Reviewed by:

Resource Planning Specialist Manager, Reliability and Planning
Generation Resource Management Generation Resource Management
BC Hydro BC Hydro
Inter-office memo

To: Site C Clean Energy Project Team
From: Faheem Sadeque
Date: 4 December 2012
File: STC12MIS YM80003-3281

Subject: Site C Clean Energy Project - Downstream Flow Modelling (1D)

1. Introduction

An analysis of the influence of the Site C Clean Energy Project (the Project) operations on downstream Peace River flows and water levels was conducted using a one-dimensional numerical hydraulic model (MIKE11). Two scenarios were considered in this study: “Without the Project” and “With the Project”. These two scenarios are termed Case A and Case B, respectively, for the purpose of this memo. The Case A model extends from the outlet of the Peace Canyon Dam to Peace Point, Alberta (a distance of approximately 1,115 km). The Case B model extends from the outlet of the Site C dam to the same downstream location (a distance of approximately 1,030 km). The hourly flows that were input to the hydraulic model for each scenario were obtained from the results of the operational modelling that is described in Volume 2 Appendix D Surface Water Regime Technical Memos, Part 1 Operations Study.

2. Hydraulic Model

2.1 Bathymetry

The hydraulic model was developed using available measured cross-sections as well as some interpolated and synthetic sections. Approximately 180 measured cross-sections were available to represent the geometry of the reach between Peace Canyon Dam and Fort Vermilion, Alberta. An additional 54 cross-sections were surveyed in the B.C. portion of the river in 2009. The measured cross-section interval for the 148 km reach of the Peace River between Peace Canyon Dam and the B.C. / Alberta border is about 0.9 km. Downstream of the border, measured cross-sections are spaced approximately 7 km apart in the 229 km reach downstream to the Town of Peace River. Twenty six measured sections and several interpolated sections were used to represent the 450 km reach between the Town of Peace River and Fort Vermilion, Alberta. Synthetic cross-sections were used for the reach between Fort Vermilion and Peace Point due to a lack of surveyed data. Synthetic sections were also added for more than 100 km downstream of Peace Point to allow a constant downstream water level boundary condition to be specified in the MIKE 11 model that does not affect the model results at Peace Point.

Measured flows for all gauged tributaries to the Peace River were included as input to the MIKE 11 model. A list of the Water Survey of Canada gauged tributaries of the Peace River upstream of Peace Point are provided in Table 1.
Table 1. Water Survey of Canada Gauged Tributaries of the Peace River Upstream of Peace Point, Alberta

<table>
<thead>
<tr>
<th>Tributary</th>
<th>Station Number</th>
<th>Period of Record</th>
<th>Drainage Area above gauge (km²)</th>
<th>Distance of Confluence from W.A.C. Bennett Dam (km)</th>
<th>Mean Annual Flow (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halfway River</td>
<td>07FA006</td>
<td>1981-2010</td>
<td>9,330</td>
<td>66</td>
<td>73</td>
</tr>
<tr>
<td>Moberly River</td>
<td>07FB008</td>
<td>1980-2010</td>
<td>1,520</td>
<td>105</td>
<td>11</td>
</tr>
<tr>
<td>Pine River</td>
<td>07FB001</td>
<td>1961-2010</td>
<td>12,100</td>
<td>121</td>
<td>189</td>
</tr>
<tr>
<td>Beatton River</td>
<td>07FC001</td>
<td>1961-2010</td>
<td>15,600</td>
<td>143</td>
<td>53</td>
</tr>
<tr>
<td>Kiskatinaw River</td>
<td>07FD001</td>
<td>1944-2010</td>
<td>3,640</td>
<td>156</td>
<td>10</td>
</tr>
<tr>
<td>Pouce Coupe River</td>
<td>07FD007</td>
<td>1971-2010</td>
<td>2,850</td>
<td>175</td>
<td>6</td>
</tr>
<tr>
<td>Clear River</td>
<td>07FD009</td>
<td>1971-2010</td>
<td>2,879</td>
<td>189</td>
<td>8</td>
</tr>
<tr>
<td>Smoky River</td>
<td>07GJ001</td>
<td>1915-2010</td>
<td>50,300</td>
<td>389</td>
<td>339</td>
</tr>
<tr>
<td>Heart River</td>
<td>07HA003</td>
<td>1963-2010</td>
<td>1,968</td>
<td>395</td>
<td>3</td>
</tr>
<tr>
<td>Whitemud River</td>
<td>07HA005</td>
<td>1971-2010</td>
<td>2,010</td>
<td>454</td>
<td>5</td>
</tr>
<tr>
<td>Notikewin River</td>
<td>07HC001</td>
<td>1961-2010</td>
<td>4,680</td>
<td>565</td>
<td>13</td>
</tr>
<tr>
<td>Keg River</td>
<td>07HF002</td>
<td>1971-2010</td>
<td>667</td>
<td>677</td>
<td>3</td>
</tr>
<tr>
<td>Ponton River</td>
<td>07JF003</td>
<td>1962-2010</td>
<td>2,440</td>
<td>847</td>
<td>15</td>
</tr>
<tr>
<td>Boyer River</td>
<td>07JF002</td>
<td>1962-2010</td>
<td>6,660</td>
<td>847</td>
<td>5</td>
</tr>
<tr>
<td>Jackpine River</td>
<td>07JD003</td>
<td>1971-2010</td>
<td>582</td>
<td>886</td>
<td>2</td>
</tr>
<tr>
<td>Wabasca River</td>
<td>07JD002</td>
<td>1970-2010</td>
<td>35,800</td>
<td>886</td>
<td>83</td>
</tr>
</tbody>
</table>

Notes:
1. The Ponton and Jackpine Rivers are tributaries of the Boyer and Wabasca Rivers, respectively. Flows from these rivers were included in the modelling because the hydrometric stations on the Boyer and Wabasca Rivers are upstream of the confluence with these rivers.
2. Mean Annual Flow is presented based on the period of record of each station, where data are available.

2.2 Calibration

MIKE 11 model calibration is described in Appendix A of this memo. In general, the model is well calibrated at the Water Survey of Canada stations along the Peace River. Graphs comparing model results to Water Survey of Canada rating curves and flow routing tests are included in Appendix A. Maximum water level differences are generally within 0.2 m to 0.3 m. Modelled flows at downstream Water Survey of Canada stations were found to follow the observed flow patterns both in magnitude and timing.
The Manning’s roughness coefficient (n), specified at each cross-section in the model was the primary calibration parameter. This coefficient describes the roughness of the channel bottom and sides, which influences the relationship between flow and water level. The calibrated Manning’s roughness coefficients for the main portions of the river channel were between 0.024 to 0.04 from Peace Canyon Dam to the Town of Peace River and between 0.017 to 0.025 from the Town of Peace River to Peace Point.

The predicted flows and water levels from this MIKE 11 model are reliable for comparing different operational scenarios (such as the comparison between “With the Project” and “Without the Project”) as far downstream as Fort Vermilion, and at Peace Point for discharges up to 2,000 m3/s. At higher discharges, modelled flows at Peace Point could be converted to water levels using the Water Survey of Canada rating curve if absolute water levels are required. For the purpose of relative comparisons of operational scenarios, modelled results of discharge and water levels at Peace Point are considered adequate.

3. Model Inputs

Operations modelling (described in Volume 2 Appendix D Surface Water Regime Technical Memos, Part 1 Operations Study) was conducted for a 60-year period from 1 October 1940 to 30 September 2000 (i.e. water years 1941 to 2000). For the current downstream flow modelling study, a subset of 10 representative water years, 1965 to 1974, was identified on the basis of Peace River flows during this 60-year period. Water years 1965 to 1974 include years that are between 86% and 130% of the 60-year average in terms of annual Peace River inflows (including reservoir inflows) upstream of the Site C dam site. The 10-year average flow is 105% of the 60-year average flow. The 10-year period contains one of the three peak daily inflows above 2,000 m3/s in the 1964-2000 period for which daily flows are available. The selection of representative years was also verified on the basis of total BC Hydro system inflows. The 10-year period contains system inflows ranging from 85% to 119% of the 60-year average, which is only slightly less than the entire 60-year period range of 80% to 122%. A qualitative comparison of 10-year hourly and daily system inflows to the Williston, Dinosaur, and Site C reservoirs with 60-year inflows also validated the selection of 1965 to 1974 as representative water years.

Hourly outflows from Peace Canyon Dam (case A) and Site C dam (case B) for the 10 representative water years were used for the flow routing study. Total local inflows to the Site C reservoir were estimated for the same period, and they were divided between the Halfway and Moberly Rivers based on the ratio of mean annual discharges at Water Survey of Canada gauges 07FA006 (Halfway River at Farrell Creek) and 07FB008 (Moberly River below Moberly Lake). This division was estimated to be 90% Halfway River and 10% Moberly River. The water year 1969-70 represents the average discharge year in terms of total annual flow volumes at Peace Canyon Dam, based on the 10-year period.

For case B, hourly outflows from the Site C dam were used as the upstream boundary condition while hourly outflows from Peace Canyon Dam were used as the upstream boundary condition for case A. For each scenario, a constant water level more than 100 km downstream of Peace Point was used as the downstream boundary condition. Model testing confirmed that the assumed water level at the downstream boundary does not affect simulated results at Peace Point.

For case A, the Halfway and Moberly flows used in the MIKE 11 model were the same as those used in the operations modelling. Daily flows from all gauged tributaries between the Site C dam

site and Peace Point were input to the hydraulic model as hourly values (i.e. same value entered for each hour in a day) to minimize model interpolation errors.

Since the available tributary discharge data were discontinuous for the 1964-1974 period, especially for smaller rivers during the winter, data infilling was required. For tributaries with data gaps in winter months during low flow periods, infilling was performed using the average daily flow for other years for which data existed for that same tributary. However, when the data gaps were longer and extended into high flow periods, gaps were infilled using regional methods with other available Peace River tributary flows. Daily average unit discharge hydrographs were produced for each tributary for the 10-year period and compared to find similarities. Reference rivers were selected for the estimation of daily flows where substantial data gaps existed. Daily discharge hydrographs for each tributary from 1964 to 1974 are included in Appendix B, showing the measured and estimated flow data. Although there is uncertainty in these estimates of tributary flows, the same assumptions were used for both cases (i.e., with and without the Project) and therefore the relative comparison of flows and water levels between the two scenarios is considered reliable.

4. Model Results and Discussion

Table 2 shows a list of figures used for presentation of the flow routing results. Note that all MIKE 11 simulations were performed without considering the effects of ice. A separate study was conducted to assess ice conditions and associated water levels with and without the Project. This study is described in the Volume 2 Appendix G Downstream Ice Regime Technical Data Report.

Comparisons of model results for case A and B are discussed below for each model output format.
Table 2: Summary of Model Output Formats

<table>
<thead>
<tr>
<th>Output Format</th>
<th>Description</th>
<th>Key Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hourly Water Level Change Duration Curves (Appendix E of this memo)</td>
<td>Hourly duration curves (Oct. 1964 to Sept. 1974)</td>
<td>Site C tailrace, Taylor, Alces, Dunvegan, Town of Peace River, Fort Vermilion and Peace Point</td>
</tr>
<tr>
<td>Daily Water Level Range (Table 3 of this memo)</td>
<td>Tabular comparison of average daily water level range (annual and seasonal, Oct. 1964 to Sept. 1974)</td>
<td>Site C tailrace, Taylor, Alces, Town of Peace River and Peace Point</td>
</tr>
<tr>
<td>Hourly Wetted Width Duration Curves (Appendix F of this memo)</td>
<td>Hourly duration curves for wetted width (Oct. 1964 to Sept. 1974)</td>
<td>Site C tailrace, Taylor, Alces, Town of Peace River and Peace Point</td>
</tr>
<tr>
<td>Hourly Average Cross-Sectional Velocity Duration Curves (Appendix G of this memo)</td>
<td>Hourly duration curves for average cross-sectional velocity (Oct. 1964 to Sept. 1974)</td>
<td>Site C tailrace, Taylor, Alces, Town of Peace River and Peace Point</td>
</tr>
</tbody>
</table>
4.1 Time Series Hydrographs

Hydraulic model results were compiled as hourly time series plots of discharge and water level in Appendix C of this memo. Daily average discharge and water level time series at Site C tailrace (outlet of the generating station) are also presented in Appendix C. Results are presented for the average water year 1969-70 with the minimum and maximum hourly values for the 1964-1974 period shown to illustrate the range of discharge and water level simulated over the ten year period. To improve clarity of the plots at the Site C tailrace and at Taylor, minimum and maximum hourly values over each day (i.e. daily time series) are drawn instead of the hourly time series.

Observations from the time series hydrographs presented in Appendix C are listed below.

- With Site C reservoir in place, generation at the Site C generating station would follow the daily load fluctuation and therefore have a similar timing pattern as that of Peace Canyon Dam.
- The proposed Site C dam is located 85 km downstream of Peace Canyon Dam. Regular operational flows from Peace Canyon take between 5 and 15 hours to reach the location of the Site C dam, depending on the flow scenario, with an average of 10 to 12 hours. Therefore, operational changes would be noticed at downstream locations on average 10-12 hours earlier with the Project.
- In general, flow oscillations are greater in magnitude in case B compared to case A, especially near Site C tailrace. This is because of flow attenuation effects between Peace Canyon Dam and the Site C dam site for case A. It is also due to the increased operational flow range in Case B compared to Case A. In general, results suggest that conditions at the outlet of the Site C dam would be more similar to the conditions experienced today near the outlet of Peace Canyon Dam. Flow attenuation is dampened with distance downstream for both case A and B.
- Modelled results for the 1964-1974 period indicate that the overall range of annual water levels at Site C tailrace are higher by up to 0.5 m for case B compared to A, except in the spring freshet period (in particular during the Halfway River peak) when the range is reduced for case B compared to case A. The difference in the range reduces to 0.3 m at Taylor. The range of hourly water levels is similar between case A and B at the Town of Peace River and Peace Point.
- For both case A and B, Peace Canyon Dam and Site C dam discharges are generally higher and vary over a relatively smaller range in December and January compared to the rest of the year. Due to low tributary inflows in winter, discharges at downstream stations are similar.

4.2 Flow and Water Level Duration Curves

Water level duration curves are presented for the 1964-1974 period in Appendix D. These duration curves show the exceedance probability (percentage of time a certain water level is equaled or exceeded based on hourly results); corresponding discharge estimates are shown using a secondary vertical axis based on the Water Survey of Canada stage-discharge relationship at each station, with the exception of Site C tailrace discharges which are based on modelled results.

Duration curves are presented for annual and seasonal periods including: typical winter operations period (Nov. 15 to Feb. 15), typical freshet operations period (May 1 to Jul. 15) and typical summer operations period (Jul. 16 to Sept. 30).
Observations from the duration curves presented in Appendix D are listed below.

- Flow duration curves for case A and B show differences at Site C tailrace near the maximum and minimum powerhouse discharges. The maximum powerhouse discharge from the Site C generating station (2,540 m3/s) is 558 m3/s higher than the Peace Canyon Dam maximum powerhouse discharge (1,982 m3/s). This results in more frequent discharges above 2,000 m3/s in case B compared to case A for the 10-year period.
- There is a greater occurrence of low flows/water levels at Site C tailrace for case B. This is because of flow attenuation effects between Peace Canyon Dam and the Site C dam site for case A which dampen the oscillations in Peace Canyon outflows; it is also due to the difference between the minimum powerhouse discharge from the Site C generating station and the combination of the Peace Canyon minimum powerhouse discharge with the inflows from the local drainage area between Peace Canyon and the Site C dam site.
- The differences between the duration curves diminish at downstream stations due to flow attenuation and tributary inflows. For stations downstream of Alces the water level duration curves show little difference between case A and B for the 10-year period.
- During the typical winter operations period (Nov. 15 to Feb. 15), duration curves at Town of Peace River and Peace Point are similar for case A and B except for 5% of the time during low flows/water levels due to a shift in upstream plant release patterns with the Project.
- Both high and low water levels at Site C tailrace during the typical freshet period (May 1 to Jul. 15) are more frequent in case B compared to A. For example, water levels at Site C tailrace are above 411 m for about 15% of the time in case A, but 25% of the time in case B. Water levels are predicted to be less than 410 m about 20% of the time in case A and 45% of the time in case B. These differences diminish by Alces due to relatively high tributary discharges at this time of year.
- Similar to the freshet period, both high and low flows and water levels at Site C tailrace during the typical summer operations period (Jul. 16 to Sept. 30) are more frequent for case B compared to A. For example, water levels at Site C tailrace are above 411 m about 16% of the time in case A and 24% of the time in case B. Water levels are predicted to be less than 410 m about 20% of the time in case A and 28% of the time in case B. These differences diminish more gradually at downstream stations compared to other periods of the year due to relatively low tributary discharges at this time of year.

4.3 Hourly Change in Water Levels

Observations about hourly change in water level based on the time series hydrographs presented in Appendix C are as follows.

- Hourly water level fluctuations at the Site C tailrace are higher for case B compared to case A due to flow attenuation over the distance from Peace Canyon Dam to the Site C tailrace in case A, and due to the higher range of operational discharges in case B.
- Hourly water level fluctuations are less pronounced in winter months in both case A and B.
- The hourly water level fluctuations are attenuated to less than 0.1 m at the Town of Peace River for both case A and B.

Duration curves for increasing and decreasing hourly changes in water level during 1964-1974 are presented in Appendix E. An hourly change in modelled water level less than 0.001 m has been considered as no change in water level for the purposes of this analysis. If 0.01 m had been considered as no change in modelled water level instead of 0.001 m, the tabulated exceedance probabilities shown on these plots for increasing, decreasing or no change in hourly
the maximum hourly change in water level at Site C tailrace in case B is about ±1.5 m during the 1964-1974 period. However, the positive and negative hourly change in water level exceed 0.5 m only 3% and 4% of the time, respectively.

- In general, model results show that water levels at the Site C tailrace remain steady in two consecutive hours more frequently in case B than case A.
- A positive hourly change in water level at Alces of 0.1 m is exceeded about 5% of the time in case A and 15% of the time in case B. Similarly, a negative hourly change in water level at Alces of 0.1 m is exceeded about 5% of the time in case A and 15% of the time in case B.
- The difference between the hourly water level change duration curves for case A and B downstream of Dunvegan is negligible.

4.4 Daily Water Level Range

The average daily range of water level (i.e. average difference between the maximum and minimum water level over each day) in the 10-year period (1964-1974) is summarized in Table 3. Estimates are shown for both annual and seasonal periods for cases A and B. The average daily range of water level is higher in case B than case A by approximately 0.5 m at Site C tailrace, and by approximately 0.05 m at the Town of Peace River. Results suggest no difference at Peace Point.

Table 3: Daily Range of Water Levels (1964-1974)

<table>
<thead>
<tr>
<th>Period</th>
<th>Site C Tailrace</th>
<th>Taylor</th>
<th>Alces</th>
<th>Town of Peace River</th>
<th>Peace Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case A</td>
<td>Case B</td>
<td>Case A</td>
<td>Case B</td>
<td>Case A</td>
</tr>
<tr>
<td>Full Year</td>
<td>0.48</td>
<td>1.01</td>
<td>0.43</td>
<td>0.76</td>
<td>0.50</td>
</tr>
<tr>
<td>Typical Winter Operations Period</td>
<td>0.36</td>
<td>0.68</td>
<td>0.33</td>
<td>0.54</td>
<td>0.39</td>
</tr>
<tr>
<td>Typical Freshet Operations Period</td>
<td>0.40</td>
<td>1.22</td>
<td>0.35</td>
<td>0.77</td>
<td>0.41</td>
</tr>
<tr>
<td>Typical Summer Operations Period</td>
<td>0.58</td>
<td>1.09</td>
<td>0.51</td>
<td>0.90</td>
<td>0.59</td>
</tr>
</tbody>
</table>
4.5 Hourly Wetted Width

Duration curves of hourly wetted width at five key locations are plotted in Appendix F based on the 10-year period (1964-1974). The wetted width is defined as the horizontal distance across the wetted portion of a cross-section. The relationship between flow and wetted width is fixed for each cross-section of the model based on the channel geometry, roughness, and slope; hence the differences in wetted width between cases A and B follow similar patterns as the differences noted above for flows and/or water levels.

Results indicate that the frequency of larger wetted widths in case A and B at all key locations are similar. However, smaller wetted widths would be expected to occur more frequently in case B than case A. For example, the hourly wetted width of the river at Site C tailrace is less than 400 m for about 8% of the time in case A and 20% of the time in case B. These differences diminish at downstream stations. The duration curves for wetted widths at Alces, Town of Peace River and Peace Point are very similar in case A and B. Some of the differences in durations for lower wetted widths, are mainly due to the shape of the cross-sections chosen for comparison. For example, at Town of Peace River there is almost no difference in wetted width for any duration. However, at Peace Point, for about 10% of the time, the wetted width for case B is in the order of 5 m less than case A.

4.6 Hourly Average Cross-Sectional Velocity

Duration curves of hourly average cross-sectional velocity in the Peace River at five key locations are provided in Appendix G based on the 10-year period (1964-1974). These velocities are derived from the one-dimensional hydraulic model results and represent spatially-averaged velocities across the selected cross-sections. In reality, velocities will vary locally within each cross-section. The relationship between flow and average cross-sectional velocity is fixed for each cross section of the model; hence the differences in wetted width between cases A and B follow similar patterns as the difference noted above for flows and/or water levels.

Duration curves for hourly average cross-sectional velocity at Site C tailrace show that velocity would be less than 1 m/s for about 20% of the time for case A and 25% of the time in case B. Differences in average cross-sectional velocities in case A and B are negligible at other downstream stations.
5. **Conclusions**

A one-dimensional hydraulic model was developed and calibrated to simulate flows and water levels on the Peace River between Peace Canyon Dam and Peace Point, Alberta. Two cases were simulated based on the results of the operations modelling described in Volume 2 Appendix D Surface Water Regime Technical Memos, Part 1 Operations Study. Case A represents possible future operations without the Project and case B represents possible future operations with the Project.

Differences in modelled water levels between cases A and B are reduced along the Peace River due to flow attenuation effects and tributary inflows. In general, modelled water level differences between case A and B are diminished after Dunvegan, approximately 190 km downstream of the Site C dam site.

Attachments
- Appendix A MIKE 11 Model Calibration
- Appendix B Daily Flow Hydrographs (Tributaries)
- Appendix C Hourly/Daily Flow and Water Level Time Series (Case A and B)
- Appendix D Hourly Water Level and Flow Duration Curves (Case A and B)
- Appendix E Hourly Water Level Change Duration Curves (Case A and B)
- Appendix F Hourly Wetted Width Duration Curves (Case A and B)
- Appendix G Hourly Average Cross-Sectional Velocity Duration Curves (Case A and B)
APPENDIX – A

MIKE 11 Model Calibration
APPENDIX A

MIKE 11 Model Calibration

The MIKE 11 model was calibrated and checked by:

- matching the Water Survey of Canada (WSC) rating curves at eight stations between Hudson’s Hope and Peace Point;
- matching Northwest Hydraulic Consultants (NHC) rating curves at five stations between Hudson’s Hope and Old Fort;
- running the model with hourly discharges recorded at Hudson’s Hope and tributary flows and comparing simulated results with flows measured at downstream WSC gauges for the following periods -
 - April 2001
 - April 2009
 - October 2009

The locations of the WSC and NHC gauges are shown in Figure A1. The NHC gauges were established in 2009 based on work for BC Hydro Environment.

The WSC rating curves from Hudson’s Hope to Alces extend to between 6,000 m³/s and 10,000 m³/s while the rating curves at gauges below Alces extend beyond 12,000 m³/s to 20,000 m³/s. The NHC rating curves extend to about 2,000 m³/s. Model calibration was performed for the full range of discharges for the WSC and NHC rating curves up to Fort Vermilion. However, MIKE 11 model testing for discharges above 2,000 m³/s was not considered at Peace Point for this operational flow routing study due to the synthetic representation of the Peace River geometry below Fort Vermilion. The comparison of model results with the eight WSC and five NHC rating curves are shown in Figures A2 to A14. Maximum water level differences are generally within 0.2 m to 0.3 m.

The results of flow routing tests are shown in Figures A15 to A32. Flow routing tests were conducted for low tributary flow periods in April 19-26, 2001, April 18-30, 2009 and October 15-30, 2009. Modelled flows at downstream WSC stations were found to follow the observed flow patterns reasonably well.
Figure A2-A5: WSC Rating Curves Calibration

A2 Hudson's Hope (WSC 07EF001)

A3 Peace above Pine (WSC 07FA004)

A4 Taylor (WSC 07FD002)

A5 Peace above Alces (WSC 07FD010)

Using an assumed datum of El. 380.6 m
Figure A6-A9: WSC Rating Curves Calibration

Dunvegan Bridge (WSC 07FD003)

Town of Peace River (WSC 07HA001)

Ft. Vermilion (WSC 07HF001)

Peace Point (WSC 07KC001)
Figure A10-A13: NHC Rating Curves Calibration

- **NHC Peace-3**
- **NHC Peace-9**
- **NHC Peace-25**
- **NHC Peace-29**
Figure A14: NHC Rating Curves Calibration

![NHC Rating Curve Calibration Graph](image-url)
Figure A15-A18: April 2001 Flow Routing Calibration

Hudson’s Hope (WSC 07EF001)

Discharge (cms)

19-Apr-01 21-Apr-01 23-Apr-01 25-Apr-01 27-Apr-01

Peace above Pine (WSC 07FA004)

Discharge (cms)

19-Apr-01 21-Apr-01 23-Apr-01 25-Apr-01 27-Apr-01

Taylor (WSC 07FD002)

Discharge (cms)

19-Apr-01 21-Apr-01 23-Apr-01 25-Apr-01 27-Apr-01

Peace above Alces (WSC 07FD010)

Discharge (cms)

19-Apr-01 21-Apr-01 23-Apr-01 25-Apr-01 27-Apr-01
Figure A19-A20: April 2001 Flow Routing Calibration

Note:
In April 2001, WSC flow records were unavailable at Fort Vermilion (07HF001) and ice affected at Peace Point (07KC001).
Figure A21-A24: April 2009 Flow Routing Calibration
Figure A25-A26: April 2009 Flow Routing Calibration

Note:
In April 2009, WSC flow records were ice affected at Fort Vermilion (07HF001) and Peace Point (07KC001).
Figure A27-A30: October 2009 Flow Routing Calibration
Figure A31-A32: October 2009 Flow Routing Calibration

A31
Ft. Vermilion (07HF001)

A32
Peace Point (07KC001)
APPENDIX – B

Daily Flow Hydrographs (Tributaries)
Pine River at East Pine WSC 07FB001
1 October 1964 to 30 September 1974
Pouce Coupe River below Henderson Creek WSC 07FD007
1 October 1964 to 30 September 1974

Flow (m³/s)

Measured
Estimated
Clear River near Bear Canyon WSC 07FD009
1 October 1964 to 30 September 1974

Flow (m³/s)

Measured
Estimated
Heart River near Nampa WSC 07HA003
1 October 1964 to 30 September 1974

Flow (m³/s)

Measured
Estimated
Whitemud River near Dixonville WSC 07HA005
1 October 1964 to 30 September 1974
Notikewin River at Manning WSC 07HC001
1 October 1964 to 30 September 1974

Measured vs Estimated Flow (m3/s) from Oct/64 to Aug/74.
Keg River at Highway No. 35 WSC 07HF002
1 October 1964 to 30 September 1974

Measured
Estimated
Boyer River near Fort Vermilion WSC 07JF002
1 October 1964 to 30 September 1974

Flow (m³/s)

Measured Estimated

APPENDIX – C

Hourly/Daily Flow and Water Level Time Series
(Case A and B)
Site C Flow Routing

Oct. 1969 - Sept. 1970 is the average water year from the Oct. 1964 - Sept. 1974 period based on PCN discharges. The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.

The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.
Site C Flow Routing

The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.
Oct. 1969 - Sept. 1970 is the average water year from the Oct. 1964 - Sept. 1974 period based on PCN discharges. The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.
Oct. 1969 - Sept. 1970 is the average water year from the Oct. 1964 - Sept. 1974 period based on PCN discharges. The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.
Site C Flow Routing

The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.
Site C Flow Routing

The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.
Site C Flow Routing

The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.

The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.

The Case A and B limits shown are the minimum and maximum flows or water surface elevations for this 10 year period.
Site C Flow Routing

APPENDIX – D

Hourly Water Level and Flow Duration Curves
(Case A and B)
Site C Flow Routing
Taylor: Hourly Duration Curves

Freshet Period: May 1 to Jul. 15 (1964-1974)

Site C Flow Routing
Alces: Hourly Duration Curves

Freshet Period: May 1 to Jul. 15 (1964-1974)

Site C Flow Routing
Dunvegan: Hourly Duration Curves

Full Year: Oct. 1974 - Sept. 1974

Freshet Period: May 1 to Jul. 15 (1964-1974)

Peace River Low Flow Period: Jul. 16 to Sept. 30 (1964-1974)
Site C Flow Routing
Fort Vermilion: Hourly Duration Curves

Freshet Period: May 1 to Jul. 15 (1964-1974)

Site C Flow Routing
Peace Point: Hourly Duration Curves

Full Year: Oct. 1974 - Sept. 1974

Freshet Period: May 1 to Jul. 15 (1964-1974)

Peace River Low Flow Period: Jul. 16 to Sept. 30 (1964-1974)
APPENDIX – E

Hourly Water Level Change Duration Curves
(Case A and B)
Site C Flow Routing

Site C Tailrace: Duration Curves for Hourly Change in Water Surface Elevation (WSE)

Exceedance Probability (%) of Hourly Change in WSE

<table>
<thead>
<tr>
<th>Case</th>
<th>Increasing</th>
<th>Decreasing</th>
<th>No change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-A</td>
<td>48.8</td>
<td>45.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Case-B</td>
<td>46.0</td>
<td>33.0</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Exceedance Probability (%) of Hourly Change in WSE:

0% 10% 20% 30% 40% 50% 60% 70%

Exceedance Probability (%)

Hourly Change in Elevation (m)
Site C Flow Routing
Taylor: Duration Curves for Hourly Change in Water Surface Elevation (WSE)

Exceedance Probability (%) of Hourly Change in WSE

<table>
<thead>
<tr>
<th></th>
<th>Case-A</th>
<th>Case-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>48.6</td>
<td>49.2</td>
</tr>
<tr>
<td>Decreasing</td>
<td>46.8</td>
<td>45.8</td>
</tr>
<tr>
<td>No change</td>
<td>4.6</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Case A- without Site C
Case B- with Site C
Site C Flow Routing
Alces: Duration Curves for Hourly Changes in Water Surface Elevation

Exceedance Probability (%)

<table>
<thead>
<tr>
<th></th>
<th>Case-A</th>
<th>Case-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>49.0</td>
<td>50.1</td>
</tr>
<tr>
<td>Decreasing</td>
<td>48.3</td>
<td>47.7</td>
</tr>
<tr>
<td>No change</td>
<td>2.7</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Hourly Changes in Elevation (m)

- Case A - without Site C
- Case B - with Site C
Site C Flow Routing
Dunvegan: Duration Curves for Hourly Change in Water Surface Elevation (WSE)

Exceedance Probability (%) of Hourly Change in WSE

<table>
<thead>
<tr>
<th></th>
<th>Case-A</th>
<th>Case-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>47.1</td>
<td>50.8</td>
</tr>
<tr>
<td>Decreasing</td>
<td>50.9</td>
<td>47.9</td>
</tr>
<tr>
<td>No change</td>
<td>2.0</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Exceedance Probability (%)

Hourly Change in Elevation (m)

Exceedance Probability (%)

Case A - without Site C
Case B - with Site C
Site C Flow Routing
Town of Peace River: Duration Curves for Hourly Change in Water Surface Elevation (WSE)

Exceedance Probability (%) of Hourly Change in WSE

<table>
<thead>
<tr>
<th>Exceedance Probability (%)</th>
<th>Case A</th>
<th>Case B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>45.0</td>
<td>46.9</td>
</tr>
<tr>
<td>Decreasing</td>
<td>50.8</td>
<td>50.0</td>
</tr>
<tr>
<td>No change</td>
<td>4.2</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Site C Flow Routing
Fort Vermilion: Duration Curves for Hourly Change in Water Surface Elevation (WSE)

Exceedance Probability (%) of Hourly Change in WSE

<table>
<thead>
<tr>
<th></th>
<th>Case A</th>
<th>Case B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>36.6</td>
<td>37.1</td>
</tr>
<tr>
<td>Decreasing</td>
<td>46.5</td>
<td>45.9</td>
</tr>
<tr>
<td>No change</td>
<td>16.9</td>
<td>17.0</td>
</tr>
</tbody>
</table>

- Blue line represents Case A - without Site C
- Red line represents Case B - with Site C
Site C Flow Routing
Peace Point: Duration Curves for Hourly Change in Water Surface Elevation (WSE)

<table>
<thead>
<tr>
<th>Exceedance Probability (%) of Hourly Change in WSE</th>
<th>Case-A</th>
<th>Case-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>33.5</td>
<td>34.0</td>
</tr>
<tr>
<td>Decreasing</td>
<td>45.3</td>
<td>44.9</td>
</tr>
<tr>
<td>No change</td>
<td>21.2</td>
<td>21.1</td>
</tr>
</tbody>
</table>

Case A- without Site C Case B- with Site C
APPENDIX – F

Hourly Wetted Width Duration Curves
(Case A and B)
Site C Flow Routing
Site C Tailrace: Oct. 1964 - Sept. 1974 Hourly Duration Curves

Exceedance Probability (%) vs. Wetted Width (m)

Case A- without Site C
Case B- with Site C
Site C Flow Routing

Wetted Width (m)

Exceedance Probability (%)
Site C Flow Routing

Wetted Width (m)

Exceedance Probability (%)
Site C Flow Routing

Case A - without Site C
Case B - with Site C
Site C Flow Routing

Wetted Width (m)
Exceedance Probability (%)
APPENDIX – G

Hourly Average Cross-Sectional Velocity Duration Curves
(Case A and B)
Site C Flow Routing
Site C Tailrace: Oct. 1964 - Sept. 1974 Hourly Duration Curves

Exceedance Probability (%)

Average Cross-sectional Velocity (m/s)

Case A- without Site C
Case B- with Site C
Site C Flow Routing

Average Cross-sectional Velocity (m/s)

Exceedance Probability (%)

Case A - without Site C
Case B - with Site C
Site C Flow Routing

Exceedance Probability (%) vs. Average Cross-sectional Velocity (m/s)

- Case A: without Site C
- Case B: with Site C
Site C Flow Routing

![Graph showing exceedance probability and average cross-sectional velocity](image)
Inter-office memo

To: Site C Clean Energy Project Team Date: 12 December 2012

From: Faheem Sadeque and Morgan Garrett File: STC12MIS YM80003-3281

Subject: Site C Clean Energy Project - Downstream Flow Modelling (2D)

1.0 Introduction

Two-dimensional (2D) modelling of four reaches of the Peace River downstream of the proposed Site C dam has been carried out for the purpose of analyzing the influence of the Project on water levels and wetted areas within four specific side-channel areas thought to provide valuable fish habitat. The four areas include an 18 km reach between the Site C dam location and the Highway 97 bridge at Taylor as well as 7 to 13 km long reaches at Pallings Flat, Raspberry Island, and Many Islands in Alberta. The four study reaches are shown together in Appendix A on Figure A-1, and in more detail on Figures A-2 through A-5.

Some of the large islands in these reaches are never submerged during normal operation of the upstream dams on the Peace River. There are also a number of gravel bars that are exposed during low flow periods and submerged during higher flow periods creating wetting and drying of numerous side channels in these river reaches.

To assess water levels and wetted areas in these reaches, two-dimensional modelling is required due to the complex flow patterns within the numerous side channels. The modelling provides a better understanding of the wetting and drying patterns as the flow in the Peace River rises and falls.

2.0 Data Collection

Bathymetric and hydraulic data were collected to support the hydrodynamic modelling of the Peace River. Bathymetric data were primarily collected in July 2010 with additional data collection in June 2011. Table 2.1 summarizes the flow in the Peace River during hydraulic data collection at each of the four reaches. Hydraulic data collected included water surface profiles along various channels as well as flow and velocity data across several transects.

<table>
<thead>
<tr>
<th>Reach</th>
<th>October 2010</th>
<th>June 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site C dam to Taylor</td>
<td>500</td>
<td>850</td>
</tr>
<tr>
<td>Pallings Flat</td>
<td>800</td>
<td>2,050</td>
</tr>
<tr>
<td>Raspberry Island</td>
<td>1,025</td>
<td>1,920</td>
</tr>
<tr>
<td>Many Islands</td>
<td>-</td>
<td>2,650</td>
</tr>
</tbody>
</table>

3.0 Model Description

The modelling was carried out using the two-dimensional Telemac2D modelling software. Telemac2D uses an unstructured flexible mesh composed of triangular elements where the
vertices of each triangle represent the computational points for the model. Figures A-6 to A-9 illustrate the computational mesh and bathymetry for each modelled reach.

The model mesh of the study area encompasses the main river channel, numerous side channels and gravel bars, large central islands, and a portion of the steep banks on either side of the river. Smaller channels in the study area are modelled with a finer mesh while larger river sections and overbank areas are represented with a coarser mesh. At each node of the mesh, the model calculates the water depth and two horizontal, depth-averaged velocity components for each time step in the simulation. By varying the mesh density in the models, the number of nodes is kept to a minimum resulting in a computationally efficient model that is suitable for simulation of the complex hydraulics within the reach.

The upstream boundary condition for each model is an inflow boundary where the Peace River flow for each scenario is entered into the model. The downstream boundary condition for each model is a steady state water level corresponding to the flow based on a rating curve of a Water Survey of Canada hydrometric gauge (e.g. 07FD002 Peace River near Taylor) or developed from the one-dimensional MIKE 11 model (described in Volume 2 Appendix D Surface Water Regime Technical Memos, Part 2 Downstream Flow Modelling (1D)). Tributary flows are added as input to the model as required (e.g. the Pine River flows were input to the Site C dam to Taylor model).

3.1 Site C Dam to Taylor

The Site C dam to Taylor modelled reach is approximately 18 km long, extending from the proposed Site C dam to the Highway 97 bridge at Taylor. The Peace River flows approximately 7 km from the proposed Site C dam location to Old Fort. Downstream of Old Fort, the river turns southeast and continues for another 11 km to the Highway 97 bridge at Taylor. The model mesh contains nearly 71,000 nodes with node spacing ranging from 1.6 m to 93 m.

3.2 Pallings Flat

The Pallings Flat study reach is almost 7 km long and is located about 13 km downstream of Taylor and about 31 km downstream of the proposed Site C dam. The model mesh contains about 25,500 nodes with the smallest spacing between nodes at about 4.5 m.

3.3 Raspberry Island

The Raspberry Island study reach is almost 13 km long and is located about 11 km downstream of the Pallings Flat study reach. The Raspberry Island model mesh contains about 27,000 nodes with the smallest spacing between nodes at almost 4.0 m. The confluence of the Kiskatinaw River (mean annual flow = 11 m3/s) and the Peace River was represented in the 2D model mesh using available data.

3.4 Many Islands

The Many Islands study reach is about 7 km long and is located in Alberta almost 50 km downstream of the B.C. / Alberta border. The model mesh contains about 39,000 nodes with the smallest spacing between nodes at about 4.0 m.
4.0 Model Calibration

4.1 Site C Dam to Taylor

The Site C dam to Taylor model was calibrated and verified as follows.

- Modelled water surface extents were matched to water surface extents shown on aerial photography. The date of photographs and the corresponding flows in the Peace and Pine Rivers are listed in Table 4.1.

<table>
<thead>
<tr>
<th>Date of Aerial Photograph</th>
<th>Peace River Flow at Site C Dam (m³/s)</th>
<th>Pine River Flow (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 25-26, 2008</td>
<td>1,010</td>
<td>85</td>
</tr>
<tr>
<td>September 13, 2009</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>September 20, 2009</td>
<td>645</td>
<td>70</td>
</tr>
<tr>
<td>August 25, 2011</td>
<td>1,975</td>
<td>295</td>
</tr>
<tr>
<td>August 26, 2011</td>
<td>1,550</td>
<td>295</td>
</tr>
<tr>
<td>July 9, 2012</td>
<td>3,100</td>
<td>440</td>
</tr>
</tbody>
</table>

- The model was calibrated using hydraulic survey data collected on October 22 and 23, 2010, when the Peace River flow was between approximately 450 m³/s and 550 m³/s near Old Fort. The concurrent Pine River flow was approximately 180 m³/s. The model was calibrated based on the following:
 - water surface profiles along four branches;
 - flow through six branches; and
 - velocity profiles along six transects.

- The model was calibrated using hydraulic survey data collected on June 4, 2011, when the Peace River flow was around 850 m³/s near Old Fort and the Pine River flow was around 1,100 m³/s. The model was calibrated as follows:
 - water surface profiles along three branches;
 - flow through ten branches;
 - velocity profiles along ten transects.

The calibration results based on the aerial photos are shown in Appendix B on Figures B-1 to B-6; these figures indicate a very similar modelled water surface extent including the numerous gravel bars that are exposed at low flow in the Site C dam to Taylor reach.

Figure B-7 shows the location of the 2010 and 2011 surveyed water surface profiles and flow/velocity transect locations used to calibrate the model. Figures B-8 to B-11 compare the surveyed and modelled water surface profiles from October 2010. Figures B-12 to B-17 compare the surveyed and modelled velocity profiles at the six locations surveyed in 2010. Table 4.2 summarizes the surveyed and modelled flow at the same six locations.
As shown on the figures, the modelled water levels along the profiles are generally within 0.1 m of the recorded levels except some local differences in the range of 0.15 m to 0.2 m. The six velocity transects show a good match between simulated and recorded values. As listed in Table 4.2, the model was also able to replicate the splitting of the flow amongst the various side channels.

Figures B-18 to B-20 compare the modelled and surveyed water surface profiles from June 2011. Figures B-21 to B-30 compare the modelled and surveyed velocity profiles at the ten locations. Table 4.3 summarizes the surveyed and modelled flow at the same ten locations.

Table 4.2 Transect Flow (m³/s) – October 2010

<table>
<thead>
<tr>
<th>Transect</th>
<th>Surveyed</th>
<th>Modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF1</td>
<td>445 - 460</td>
<td>479</td>
</tr>
<tr>
<td>OF2</td>
<td>488 - 499</td>
<td>471</td>
</tr>
<tr>
<td>OF3</td>
<td>0.6 - 1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>OF4</td>
<td>18 – 21</td>
<td>13</td>
</tr>
<tr>
<td>T1</td>
<td>565 - 573</td>
<td>551</td>
</tr>
<tr>
<td>T2</td>
<td>324 - 330</td>
<td>313</td>
</tr>
</tbody>
</table>

As shown on the figures, the modelled water levels along the profiles are generally within 0.1 m of the recorded levels and the ten velocity transects show good agreement between simulated and recorded values. The discrepancies of the velocity magnitude are generally limited to within about 0.2 m/s. The model was also able to replicate the splitting of the flow amongst the various side channels as listed in Table 4.3. A discussion of uncertainties is presented in Section 7.0.

Table 4.3 Transect Flow (m³/s) – June 2011

<table>
<thead>
<tr>
<th>Transect</th>
<th>Surveyed</th>
<th>Modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1</td>
<td>717 - 720</td>
<td>714</td>
</tr>
<tr>
<td>SC2</td>
<td>126 - 127</td>
<td>126</td>
</tr>
<tr>
<td>SC3</td>
<td>843 - 916</td>
<td>848</td>
</tr>
<tr>
<td>OF1</td>
<td>843 - 861</td>
<td>852</td>
</tr>
<tr>
<td>OF2</td>
<td>778 - 841</td>
<td>823</td>
</tr>
<tr>
<td>OF3</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>OF4</td>
<td>71</td>
<td>113</td>
</tr>
<tr>
<td>OF5</td>
<td>763 - 776</td>
<td>734</td>
</tr>
<tr>
<td>TA1</td>
<td>32 – 34</td>
<td>27</td>
</tr>
<tr>
<td>TA2</td>
<td>2,024 – 2,046</td>
<td>1,962</td>
</tr>
</tbody>
</table>

As shown on the figures, the modelled water levels along the profiles are generally within 0.1 m of the recorded levels and the ten velocity transects show good agreement between simulated and recorded values. The discrepancies of the velocity magnitude are generally limited to within about 0.2 m/s. The model was also able to replicate the splitting of the flow amongst the various side channels as listed in Table 4.3. A discussion of uncertainties is presented in Section 7.0.

4.2 Pallings Flat

The Pallings Flat model was calibrated and verified as follows.

- Modelled water surface extents were matched to water surface extents shown on aerial photography. The dates of photographs and the corresponding flows in the Peace River are listed in Table 4.4.
Table 4.4 Dates of Aerial Photographs used for Model Calibration and Corresponding Flows (Pallings Flat Reach)

<table>
<thead>
<tr>
<th>Date of Aerial Photograph</th>
<th>Peace River Flow at Pallings Flat (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 22, 2010</td>
<td>400</td>
</tr>
<tr>
<td>August 25, 2011</td>
<td>2,270</td>
</tr>
<tr>
<td>August 26, 2011</td>
<td>1,840</td>
</tr>
<tr>
<td>July 9, 2012</td>
<td>3,535</td>
</tr>
</tbody>
</table>

- The model was calibrated using hydraulic survey data collected on October 23, 2010, when the Peace River flow in this reach was approximately 800 m3/s. The model was calibrated based on the following:
 - water surface profiles along four branches;
 - flow through six branches; and,
 - velocity profiles along six transects.

- The model was calibrated using hydraulic survey data collected on June 3, 2011, when the Peace River flow in this reach was approximately 2,050 m3/s. The model was calibrated based on the following:
 - water surface profiles along four branches;
 - flow through eight branches; and,
 - velocity profiles along eight transects.

The calibration results based on aerial photos are shown in Appendix C on Figures C-1 to C-4; these figures indicate a very similar modelled water surface extent including the numerous gravel bars that are exposed at low flow and side channels that are flooded during high flows.

Figure C-5 shows the locations of the 2010 and 2011 surveyed water surface profiles and flow/velocity transect locations used to calibrate the model. Figures C-6 to C-9 compare the surveyed and modelled water surface profiles from October 2010. Figures C-10 to C-15 compare the surveyed and modelled velocity profiles at the six locations surveyed in 2010. Table 4.5 summarizes the surveyed and modelled flow at the same six locations.

Table 4.5 Transect Flow (m3/s) – October 2010

<table>
<thead>
<tr>
<th>Transect</th>
<th>Surveyed</th>
<th>Modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>599 - 607</td>
<td>603</td>
</tr>
<tr>
<td>2</td>
<td>186 - 195</td>
<td>204</td>
</tr>
<tr>
<td>3</td>
<td>753 - 777</td>
<td>766</td>
</tr>
<tr>
<td>4</td>
<td>35 – 39</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>432 - 436</td>
<td>429</td>
</tr>
<tr>
<td>6</td>
<td>377 - 387</td>
<td>369</td>
</tr>
</tbody>
</table>

As shown on the figures, the modelled water levels along the profiles are generally within 0.1 m of the recorded levels except for a dip in the recorded data in Profile 3 (Figure C-8). The six velocity transects show a good match between simulated and recorded values. As listed in Table 4.5, the model was also able to replicate the splitting of the flow amongst the various side channels.
Figures C-16 to C-19 compare the modelled and surveyed water surface profiles from June 2011. Figures C-20 to C-27 compare the modelled and surveyed velocity profiles at the eight locations. Table 4.6 summarizes the surveyed and modelled flows at the same eight locations.

<table>
<thead>
<tr>
<th>Transect</th>
<th>Surveyed</th>
<th>Modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,115 – 1,200</td>
<td>1,161</td>
</tr>
<tr>
<td>2</td>
<td>872 - 898</td>
<td>894</td>
</tr>
<tr>
<td>3</td>
<td>1,396 – 1,809</td>
<td>1,681</td>
</tr>
<tr>
<td>4</td>
<td>269 - 270</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>989 – 1,421</td>
<td>1,311</td>
</tr>
<tr>
<td>6</td>
<td>623 - 691</td>
<td>743</td>
</tr>
<tr>
<td>7</td>
<td>1,498 – 2,194</td>
<td>2,053</td>
</tr>
<tr>
<td>8</td>
<td>144 - 173</td>
<td>153</td>
</tr>
</tbody>
</table>

As shown on the figures, the modelled water levels along the profiles are generally within 0.1 m of the recorded levels and the eight velocity transects show good agreement between simulated and recorded values. At transect 7 (Figure C-26), there is a discrepancy in the velocities between the two transect measurements. Additional measurements were not made to establish a consistent result. The model matched closely to the Recorded 'B' transect. The model was also able to replicate the splitting of the flow amongst the various side channels as listed in Table 4.6. A discussion of uncertainties is discussed in Section 7.0.

4.3 Raspberry Island

The Raspberry Island model was calibrated and verified as follows.

- Modelled water surface extents were matched to water surface extents shown on aerial photography. The date of photographs and the corresponding flows in the Peace River are listed in Table 4.7.

<table>
<thead>
<tr>
<th>Date of Aerial Photograph</th>
<th>Peace River Flow at Raspberry Island (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 22, 2010</td>
<td>400</td>
</tr>
<tr>
<td>August 25, 2011</td>
<td>2,290</td>
</tr>
<tr>
<td>August 26, 2011</td>
<td>1,865</td>
</tr>
<tr>
<td>July 9, 2012</td>
<td>3,580</td>
</tr>
</tbody>
</table>

- The model was calibrated using hydraulic data collected on October 22, 2010, when the Peace River flow in this reach was approximately 1,025 m³/s. The model was calibrated based on the following:
 - water surface profiles along two branches;
 - flow through six branches; and,
 - velocity profiles along six transects.
The model was calibrated using hydraulic data collected on June 5, 2011, when the Peace River flow in this reach was approximately 1,920 m3/s. The model was calibrated based on the following:
 - water surface profiles along four branches;
 - flow through eight branches; and,
 - velocity profiles along eight transects.

The calibration results based on the aerial photos are shown in Appendix D on Figures D-1 to D-4; these figures indicate a very similar modelled water surface extent including the numerous gravel bars that are exposed at low flow and side channels that are flooded during high flows.

Figure D-5 shows the location of the 2010 and 2011 surveyed water surface profiles and flow/velocity transect locations used to calibrate the model. Figures D-6 and D-7 compare the surveyed and modelled water surface profiles from October 2010. Figures D-8 to D-13 compare the surveyed and modelled velocity profiles at the six locations surveyed in October 2010. Table 4.8 summarizes the surveyed and modelled flow at the same six locations.

Table 4.8 Transect Flow (m3/s) – October 2010

<table>
<thead>
<tr>
<th>Transect</th>
<th>Surveyed</th>
<th>Modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27 - 28</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>970 - 996</td>
<td>985</td>
</tr>
<tr>
<td>3</td>
<td>850 - 855</td>
<td>850</td>
</tr>
<tr>
<td>4</td>
<td>145 - 152</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>47 - 50</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>102 - 104</td>
<td>95</td>
</tr>
</tbody>
</table>

As shown on the figures, the modelled water levels along the profiles are generally within 0.1 m of the recorded levels with the six velocity transects showing a good match between the simulated and recorded values. The model was also able to replicate the splitting of the flow amongst the various side channels as shown in Table 4.8.

Figures D-14 to D-17 compare the surveyed and modelled water surface profiles from June 2011. Figures D-18 to D-25 compare the surveyed and modelled velocity profiles at the eight locations. There was no survey carried out at the location of Transect 3 for the 2011 survey. Table 4.9 summarizes the surveyed and modelled flow at the same eight locations.

Table 4.9 Transect Flow (m3/s) – June 2011

<table>
<thead>
<tr>
<th>Transect</th>
<th>Surveyed</th>
<th>Modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111 - 115</td>
<td>108</td>
</tr>
<tr>
<td>2</td>
<td>1,824 – 1,840</td>
<td>1,825</td>
</tr>
<tr>
<td>4</td>
<td>467 - 476</td>
<td>477</td>
</tr>
<tr>
<td>5</td>
<td>191 - 193</td>
<td>191</td>
</tr>
<tr>
<td>6</td>
<td>273 - 285</td>
<td>300</td>
</tr>
<tr>
<td>7</td>
<td>1,387 – 1,487</td>
<td>1,421</td>
</tr>
<tr>
<td>8</td>
<td>89 - 93</td>
<td>91</td>
</tr>
<tr>
<td>9</td>
<td>194 - 205</td>
<td>210</td>
</tr>
</tbody>
</table>

As shown on the figures, the modelled water levels along the profiles are generally within 0.1 m of the recorded levels. The eight velocity transects show good agreement between the simulated and recorded values, although there are differences of up to 0.2 m/s to 0.4 m/s across transect 6 (Figure D-22). The modelled flow for this transect is within about 20 m3/s of the recorded average value of 280 m3/s (Table 4.9). As shown in Table 4.9, the model was also able to replicate the splitting of the flow amongst the various side channels. A discussion of uncertainties is discussed in Section 7.0.
4.4 Many Islands

The Many Islands model was calibrated and verified as follows.

- Modelled water surface extents were matched to water surface extents shown on aerial photography. The date of photographs and the corresponding flows in the Peace River are listed in Table 4.10.

<table>
<thead>
<tr>
<th>Date of Aerial Photograph</th>
<th>Peace River Flow at Many Islands (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 26, 2011</td>
<td>2,200</td>
</tr>
<tr>
<td>July 9, 2012</td>
<td>3,590</td>
</tr>
</tbody>
</table>

- The model was calibrated using hydraulic data collected on June 2, 2011, when the Peace River flow in this reach was approximately 2,650 m3/s. The model was calibrated based on the following:
 - water surface profiles along three branches;
 - flow through ten branches; and,
 - velocity profiles along ten transects.

The calibration results based on the aerial photos are shown in Appendix E on Figures E-1 and E-2; these figures indicate a very similar modelled water surface extent including the numerous side channels between the numerous islands.

Figure E-3 shows the location of the three surveyed water surface profiles and the ten flow and velocity transect locations surveyed in June 2011. Figures E-4 to E-6 compare the surveyed and modelled water surface profiles. Figures E-7 to E-16 compare the surveyed and modelled velocity transects at the ten locations. Table 4.11 summarizes the surveyed and modelled flow at the same ten locations.

<table>
<thead>
<tr>
<th>Transect</th>
<th>Surveyed</th>
<th>Modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,668 – 2,747</td>
<td>2,644</td>
</tr>
<tr>
<td>2</td>
<td>2,619 – 2,718</td>
<td>2,638</td>
</tr>
<tr>
<td>3</td>
<td>1,237 – 1,342</td>
<td>1,400</td>
</tr>
<tr>
<td>4</td>
<td>516 – 547</td>
<td>580</td>
</tr>
<tr>
<td>5</td>
<td>243 – 255</td>
<td>236</td>
</tr>
<tr>
<td>6</td>
<td>143 – 145</td>
<td>163</td>
</tr>
<tr>
<td>7</td>
<td>42 – 43</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>199 – 200</td>
<td>185</td>
</tr>
<tr>
<td>9</td>
<td>182 – 196</td>
<td>236</td>
</tr>
<tr>
<td>10</td>
<td>2,382 – 2,436</td>
<td>2,423</td>
</tr>
</tbody>
</table>

As shown on the figures, the modelled water levels along the profiles are generally within 0.1 m of the recorded levels except for the lower reach of Profile 3 (Figure E-6) where the difference is about 0.2 m through the several islands. The ten velocity transects show good agreement between the simulated and recorded values. In general, the model was also able to replicate the splitting of the flow amongst the various side channels. As discussed in Section 7.0, there is uncertainty in the flow measurements, particularly for relatively shallow side channels.
5.0 Simulation of Minimum and Maximum Turbine Flows

Inundation mapping was carried out for the four reaches using the two-dimensional model developed for this study. Steady-state (constant with time) minimum and maximum turbine flow scenarios from both Peace Canyon Dam and Site C dam were simulated. Minimum and maximum licensed turbine flows from Peace Canyon Dam are 283 m3/s and 1,982 m3/s, respectively. Minimum and maximum Site C turbine flows were assumed to be 390 m3/s and 2,540 m3/s, respectively.

In order to compare scenarios with and without the Project, estimates of gauged tributary inflows between the Peace Canyon Dam and the Site C dam (i.e. Halfway and Moberly Rivers) were added to Peace Canyon turbine flows for the case without the Project. In addition, flow estimates for gauged tributaries downstream of the Site C dam were considered in the model as a lateral inflow for both scenarios. To understand the near maximum possible difference in the Peace River flow regime with and without the Project, the minimum turbine flows from Peace Canyon were combined with high tributary flows (90th percentile) and the maximum turbine flows from Peace Canyon were combined with low tributary flows (10th percentile). The maximum difference between Peace Canyon and Site C minimum turbine flow scenarios would typically occur during the annual freshet when some of the Halfway and Moberly River flows could be captured in Site C reservoir. The largest difference between Peace Canyon and Site C maximum turbine flow scenarios would be expected to occur during periods of low tributary flow highlighting the difference in generation capacity of the Peace Canyon and Site C generating stations.

The flow scenarios for the inundation mapping are summarized in Table 5.1. Constant flows were used as input for these 2D model simulations. In reality, operational flows fluctuate according to the daily load pattern. The daily rise and fall of Peace River operational flows results in dynamic wetting and drying of channel areas. Therefore, the inundation maps presented in this memo are conservative (i.e. they illustrate the near maximum possible change due to the Project).

Table 5.1 Peace River Flows* for Inundation Mapping Scenarios

<table>
<thead>
<tr>
<th>Reach</th>
<th>Without the Project (m3/s)</th>
<th>With the Project (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mina</td>
<td>Maxb</td>
</tr>
<tr>
<td>Site C Dam to Taylorc</td>
<td>511</td>
<td>1,993</td>
</tr>
<tr>
<td>Pallings Flat</td>
<td>1,052</td>
<td>2,021</td>
</tr>
<tr>
<td>Raspberry Islandd</td>
<td>1,211</td>
<td>2,022</td>
</tr>
<tr>
<td>Many Islands</td>
<td>1,268</td>
<td>2,022</td>
</tr>
</tbody>
</table>

* - Peace River flows are calculated at the upstream end of the reach.

- Minimum Peace Canyon turbine flow is combined with 90th percentile flow from tributaries between the Peace Canyon Dam and the Site C dam.
- Maximum Peace Canyon turbine flow is combined with 10th percentile flow from tributaries between the Peace Canyon Dam and the Site C dam.
- Pine River flows are considered as lateral inflows.
- Kiskatinaw River flows are considered as lateral inflows.

Inundation maps comparing the water surface extent for the minimum and maximum turbine flow scenarios with and without the Project are shown in Appendix F, Figures F-1 to F-5.

For the Site C dam to Taylor reach, the main difference in water surface extent between the minimum flow scenarios with and without the Project is in the side channels near Old Fort which are partially dry in the case with the Project. The water surface extents for the maximum flow scenarios with and without the Project are similar except for a few side channels that are inundated near Old Fort and below the Pine River confluence for case with the Project.

For the three downstream reaches, there is very little difference in water surface extent between the minimum flow scenarios with and without the Project other than small areas of some gravel bars that are exposed for the case with the Project. There is almost no difference in water surface
extent between the maximum flow scenarios with and without the Project other than a couple of small side channels that are wetted in the Many Islands reach for the case with the Project. The flow scenarios presented in this memo extend beyond the lower range of available data and imagery used for model development and calibration at Many Islands.

6.0 Relationship between Peace River Flow and Wetted Area in the Site C Dam to Taylor Reach

Peace River flows were modelled for the Site C dam to Taylor reach to develop a relationship between the Peace River flow and wetted area. Forty six scenarios were simulated with 50 m3/s increments of Peace River flow from 300 m3/s to 2,540 m3/s. An additional four scenarios were simulated between 283 m3/s to 425 m3/s for a more precise relationship at lower flows. The concurrent Pine River flow was assumed to be at the annual average flow of 200 m3/s. Shapefiles for the water surface extent were extracted from 2D model steady-state simulation results to calculate wetted area for each flow.

Average Peace River flow is roughly 1,000 m3/s near Old Fort. Therefore, initial conditions for simulating the above flow scenarios in the model were developed with a flow of 1,000 m3/s. Modelled flows were held constant for 24 hours to obtain steady-state conditions. Flows less than 1,000 m3/s resulted in draining of some of the side channels, while flows above 1,000 m3/s inundated additional areas. Some side channels show ponded areas (i.e. inundated regions that are disconnected from the main river) for low flows at the end of the 24-hour simulation. Connected inundated areas were calculated for each flow scenario. The modelled ponded areas, which are sensitive to assumed initial conditions and the duration of the steady-state simulations, were calculated separately.

Figure G-1 in Appendix G shows the relationship between Peace River flow and wetted area for the Site C dam to Taylor reach, with and without modelled ponded areas for flows in the range of 283 m3/s to 2,540 m3/s. The relationship is generally smooth with some inflection points where additional side channels and/or shoreline areas become inundated.

In addition, a separate flow vs. wetted area relationship was developed for the Old Fort side channels. Figure G-2 shows the region considered to develop this relationship. The Peace River flow vs. wetted area curve at Old Fort shown in Figure G-3 indicates abrupt changes in slope around 500 m3/s and 1,900 m3/s. Figures G-4, G-5, and G-6 show the wetting conditions in the Old Fort Side channel area for Peace River flows around 400 m3/s, 500 m3/s and 1,900 m3/s, respectively. Side channels 1, 2, 3 and 4 were found to connect to the main river at Peace River flows of about 400 m3/s, 450 m3/s, 800 m3/s and 2,500 m3/s, respectively.

7.0 Uncertainties

Although the 2D models presented in this memo are well calibrated based on available data, there are several sources of error that result in uncertainties with the modelling results. The error sources include the following:

- The largest source of uncertainty is the dynamic nature of the river as the bed level in the side channels and along the banks of the main channel can change from year to year due to large flows and the sediment input from the tributaries. For example, the bed elevations of one particular side channel in the Palling’s Flat reach changed substantially between 2009 and 2011 as shown by available photos. Also, vegetation growth in the side channel can vary from year to year affecting the depth and magnitude of flow. Since the model was calibrated based on imagery and data available at the time of the study, the models may not be representative of local conditions in some areas in future years.

- The model of the Site C dam to Taylor reach was calibrated based on data at various flows in the range of approximately 400 m3/s to 3,100 m3/s. Modelling flows outside the range of calibration information may introduce errors in the results.
8.0 Conclusions

1. The 2D models developed and calibrated in this study can be used to aid in aquatic habitat assessment of operational scenarios with and without the Project.

2. The simulation of minimum and maximum turbine flows and corresponding maps illustrating the surface water extent suggest the following:
 a. In the Site C dam to Taylor reach, the main difference in water surface extent between the minimum flow scenarios with and without the Project is in the side channels near Old Fort which are partially dry for the case with the Project. The water surface extents for the maximum turbine flow scenario are similar with and without the Project except for a few side channels that are inundated near Old Fort and below the Pine River confluence for the case with the Project but not for the case without the Project.
 b. In the three downstream reaches there is very little difference in water surface extent between the minimum turbine flow scenarios with and without the Project other than relatively small areas of some gravel bars that are exposed for the scenario with the Project. For the maximum turbine flow scenario, there is almost no difference with and without the Project with the exception of a couple of small side channels that are inundated for the scenario with the Project in the Many Islands reach.

3. A relationship between Peace River flow and wetted area for the Site C dam to Taylor reach was developed using the model results for flows in the range of 283 m3/s to 2,540 m3/s. The relationship is generally smooth with some inflection.
points where additional side channels and/or shoreline areas become inundated. An additional curve was developed to show the relation between Peace River flow and Old Fort side channel wetted area.

Prepared by:

Faheem Sadeque, P.Eng

Reviewed by:

Morgan Garrett, P.Eng.

Faizal Yusuf, P.Eng.

Attachments
Appendix A Maps of 2D Modelling Study Reaches
Appendix B Site C Dam to Taylor Reach – Calibration Figures
Appendix C Pallings Flat Reach – Calibration Figures
Appendix D Raspberry Island Reach – Calibration Figures
Appendix E Many Islands Reach – Calibration Figures
Appendix F Maps Comparing Water Surface Extents for Minimum and Maximum Turbine Flows
Appendix G Site C Dam to Taylor Reach – Flow-Wetted Area Relationship
Appendix A

Maps of 2D Modelling Study Reaches
Figure 1: Selected Peace River Reaches for 2D Modelling for Side Channel Habitat Assessment

Map Notes:
1. Datum: NAD83
2. Projection: UTM Zone 10N
3. Base Data: Province of B.C.

Construction of the Site C Clean Energy Project is subject to required regulatory approvals including environmental certification.

© BC Hydro 2012 – all rights reserved. This map is for information purposes only and accuracy is not guaranteed.
Figure A-3 - Pallings Flat Study Area

Peace River

400 m
Figure A-4 - Raspberry Island Study Area
Figure A-7 - Telemac2D Model Mesh and Bathymetry - Pallings Flat
Figure A-8 - Telemac2D Model Mesh and Bathymetry - Raspberry Island
Appendix B

Site C Dam to Taylor Reach
Calibration Figures
Figure B-1 - Aerial Photo Calibration (Site C Dam to Taylor, Flow = 1,010 m³/s)

Photo Date: October 25-26, 2008
Peace River Discharge near Old Fort: ~1,010 m³/s
Pine River Discharge: ~80 m³/s
Modelled Water Surface Extent

Photo Date: September 13, 2009
Peace River Discharge near Old Fort: ~400 m³/s
Pine River Discharge: ~100 m³/s

Photo Date: May 8, 1995
Peace River Discharge near Old Fort: ~450 m³/s
Pine River Discharge: ~340 m³/s

Figure B-2 - Aerial Photo Calibration (Site C Dam to Taylor, Flow = 400 m³/s)
Photo Date: September 20, 2009
Peace River Discharge near Old Fort: ~645 m³/s
Pine River Discharge: ~70 m³/s

Figure B-3 - Aerial Photo Calibration (Site C Dam to Taylor, Flow = 645 m³/s)
Photo Date: August 25, 2011
Peace River Discharge near Old Fort: ~1,975 m³/s
Pine River Discharge: ~295 m³/s

Figure B-4 - Aerial Photo Calibration (Site C Dam to Taylor, Flow = 1,975 m³/s)
Modelled Water Surface Extent

Photo Date: August 26, 2011
Peace River Discharge near Old Fort: ~1,550 m3/s
Pine River Discharge: ~295 m3/s

Figure B-5 - Aerial Photo Calibration (Site C Dam to Taylor, Flow = 1,550 m3/s)
Photo Date: July 9, 2012
Peace River Discharge near Old Fort: ~3,100 m3/s
Pine River Discharge: ~440 m3/s

Figure B-6 - Aerial Photo Calibration (Site C Dam to Taylor, Flow = 3,100 m3/s)
Figure B-7 - Hydraulic Survey Locations (Site C Dam to Taylor)
Figure B-8 - Water Surface Profile Comparison
(Site C Dam to Taylor, October 2010 Line P1)

Refer to Figure B-7 for profile location
Figure B-9 - Water Surface Profile Comparison (Site C Dam to Taylor, October 2010 Line P2)

Refer to Figure B-7 for profile location

- Recorded
- Modelled
Figure B-10 - Water Surface Profile Comparison
(Site C Dam to Taylor, October 2010 Line P3)

Refer to Figure B-7 for profile location
Figure B-11 - Water Surface Profile Comparison
(Site C Dam to Taylor, October 2010 Line P4)

Refer to Figure B-7 for profile location
Old Fort to Taylor Reach Transect Velocity Comparision
October 2010

Figure B-12 - OF1

Figure B-13 - OF2

Figure B-14 - OF3

Refer to Figure B-7 for transect location
Refer to Figure B-7 for transect location
Figure B-18 - Water Surface Profile Comparison
(Site C Dam to Taylor, June 2011 Line P1)

Refer to Figure B-7 for profile location
Figure B-19 - Water Surface Profile Comparison
(Site C Dam to Taylor, June 2011 Line P2)

Refer to Figure B-7 for profile location
Figure B-20 - Water Surface Profile Comparison
(Site C Dam to Taylor, June 2011 Line P3)

Refer to Figure B-7 for profile location.
Site C Dam to Taylor Reach Transect Velocity Comparison
June 2011

Figure B-21 - SC1

Figure B-22 - SC2

Figure B-23 - SC3

Refer to Figure B-7 for transect location
Site C Dam to Taylor Reach Transect Velocity Comparison
June 2011

Figure B-24 - OF1

Figure B-25 - OF2

Figure B-26 - OF3

Refer to Figure B-7 for transect location
Site C Dam to Taylor Reach Transect Velocity Comparison

June 2011

Figure B-27 - OF4

Figure B-28 - OF5

Figure B-29 - TA1

Refer to Figure B-7 for transect location
Refer to Figure B-7 for transect location
Appendix C

Palling Flat Reach
Calibration Figures
Photo Date: Sep. 22, 2010
Discharge: 400 m3/s

Modelled Water Surface Extent

Figure C-1 - Aerial Photo Calibration (Palling s Flat, Flow = 400 m3/s)
Photo Date: Aug. 25, 2011
Discharge: 2,270 m³/s

Modelled Water Surface Extent

Figure C-2 - Aerial Photo Calibration (Pallings Flat, Flow = 2,270 m³/s)
Photo Date: Aug. 26, 2011
Discharge: 1,840 m^3/s

Modelled Water Surface Extent

Figure C-3 - Aerial Photo Calibration (Pallings Flat, Flow = 1,840 m^3/s)
Figure C-4 - Aerial Photo Calibration (Pallings Flat, Flow = 3,535 m3/s)
Figure C-5 - Hydraulic Survey Locations (Pallings Flat)
Figure C-6 - Water Surface Profile Comparison
(Pallings Flat, October 2010 Line P1)

Refer to Figure C-5 for profile location.
Figure C-7 - Water Surface Profile Comparison
(Pallings Flat, October 2010 Line P2)

Refer to Figure C-5 for profile location.
Figure C-8 - Water Surface Profile Comparison
(Pallings Flat, October 2010 Line P3)

Refer to Figure C-5 for profile location
Figure C-9 - Water Surface Profile Comparison
(Pallings Flat, October 2010 Line P4)

Refer to Figure C-5 for profile location
Figure C-10 - PF1

Figure C-11 - PF2

Figure C-12 - PF3

Refer to Figure C-5 for transect location
Refer to Figure C-5 for transect location
Figure C-16 - Water Surface Profile Comparison
(Pallings Flat, June 2011 Line P1)

Refer to Figure C-5 for profile location
Figure C-17 - Water Surface Profile Comparison
(Pallings Flat, June 2011 Line P2)

Refer to Figure C-5 for profile location
Figure C-18 - Water Surface Profile Comparison
(Pallings Flat, June 2011 Line P3)

Refer to Figure C-5 for profile location.
Figure C-19 - Water Surface Profile Comparison
(Pallings Flat, June 2011 Line P4)

Refer to Figure C-5 for profile location.
Pallings Flat Reach Transect Velocity Comparison
June 2011

Figure C-20 - PF1

Figure C-21 - PF2

Figure C-22 - PF3

Refer to Figure C-5 for transect location
Refer to Figure C-5 for transect location
Pallings Flat Reach Transect Velocity Comparision
June 2011

Refer to Figure C-5 for transect location
Appendix D

Raspberry Island Reach
Calibration Figures
Figure D-2 - Aerial Photo Calibration (Raspberry Island, Flow = 2,290 m³/s)
Figure D-3 - Aerial Photo Calibration (Raspberry Island, Flow = 1,865 m³/s)
Photo Date: July 9, 2012
Discharge: 3,580 m³/s

Modelled Water Surface Extents

Figure D-4 - Aerial Photo Calibration (Raspberry Island, Flow = 3,580 m³/s)
Figure D-5 - Hydraulic Survey Locations (Raspberry Island)
Figure D-6 - Water Surface Profile Comparison
(Raspberry Island, October 2010 Line P1)

Refer to Figure D-5 for profile location.
Figure D-7 - Water Surface Profile Comparison
(Raspberry Island, October 2010 Line P2)

Refer to Figure D-5 for profile location.
Raspberry Island Reach Transect Velocity Comparison
October 2010

Figure D-8 - RI1

Figure D-9 - RI2

Figure D-10 - RI3

Refer to Figure D-5 for transect location
Refer to Figure D-5 for transect location
Figure D-14 - Water Surface Profile Comparison
(Raspberry Island, June 2011 Line P1)

Refer to Figure D-5 for profile location.
Refer to Figure D-5 for profile location.
Refer to Figure D-5 for profile location.
Figure D-17 - Water Surface Profile Comparison
(Raspberry Island, June 2011 Line P4)

Refer to Figure D-5 for profile location
Raspberry Island Reach Transect Velocity Comparison
June 2011

Figure D-18 - RI1

Figure D-19 - RI2

Figure D-20 - RI4

Refer to Figure D-5 for transect location
Raspberry Island Reach Transect Velocity Comparison
June 2011

Figure D-21 - RI5

Figure D-22 - RI6

Figure D-23 - RI7

Refer to Figure D-5 for transect location
Raspberry Island Reach Transect Velocity Comparison
June 2011

Figure D-24 - RI8

Figure D-25 - RI9

Refer to Figure D-5 for transect location
Appendix E

Many Islands Reach
Calibration Figures
Figure E-1 - Aerial Photo Calibration (Many Islands, Flow = 2,200 m³/s)

Photo Date: Aug. 26, 2011
Discharge: 2,200 m³/s

Modelled Water Surface Extents
Figure E-2 - Aerial Photo Calibration (Many Islands, Flow = 3,590 m³/s)

Photo Date: July 9, 2012
Discharge: 3,590 m³/s

Peace River

Modelled Water Surface Extents

500 m
Figure E-3 - Hydraulic Survey Locations (Many Islands)
Figure E-4 - Water Surface Profile Comparison
(Many Islands, June 2011 Line P1)

Refer to Figure E-3 for profile location

Recorded
Modelled
Figure E-5 - Water Surface Profile Comparison
(Many Islands, June 2011 Line P2)

Refer to Figure E-3 for profile location
Figure E-6 - Water Surface Profile Comparison
(Many Islands, June 2011 Line P3)

Refer to Figure E-3 for profile location
Many Islands Reach Transect Velocity Comparison
June 2011

Figure E-7 - MI1

Figure E-8 - MI2

Figure E-9 - MI3

Refer to Figure E-3 for transect location
Many Islands Reach Transect Velocity Comparison
June 2011

Figure E-10 - MI4

Figure E-11 - MI5

Figure E-12 - MI6

Refer to Figure E-3 for transect location
Many Islands Reach Transect Velocity Comparison
June 2011

Refer to Figure E-3 for transect location
Many Islands Reach Transect Velocity Comparision
June 2011

Refer to Figure E-3 for transect location
Appendix F

Maps Comparing Water Surface Extents for Minimum and Maximum Turbine Flows
Map Notes:
1. Datum/Projection: NAD83/UTM Zone 10N
2. Data Source: TRIM data from B.C. Government.
3. Orthophotos created from 1:40,000 photos taken Sept. 10th 2007; 1:5,000 photos taken September 13, 2009; TRIM, Bing Maps Aerial.

Construction of the Site C Clean Energy Project is subject to required regulatory approvals including environmental certification.

Minimum and Maximum Powerhouse Discharges for Peace Canyon Dam and Site C Dam operational scenarios.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Peace Canyon Discharge (m³/s)</th>
<th>Site C Discharge (m³/s)</th>
<th>Total Discharge (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peace Canyon minimum flow</td>
<td>283</td>
<td>228</td>
<td>511</td>
</tr>
<tr>
<td>Peace Canyon maximum flow</td>
<td>2,540</td>
<td>0</td>
<td>2,540</td>
</tr>
<tr>
<td>Site C minimum flow</td>
<td>390</td>
<td>0</td>
<td>390</td>
</tr>
<tr>
<td>Site C maximum flow</td>
<td>1,993</td>
<td>11</td>
<td>2,004</td>
</tr>
</tbody>
</table>

- Minimum dam discharges have been combined with 95th percentile tributary discharges. Maximum dam discharges have been combined with 10th percentile tributary discharges. These flow combinations provide near maximum differences in inundation between Peace Canyon Dam and Site C Dam operational scenarios.
Construction of the Site C Clean Energy Project is subject to required regulatory approvals including environmental certification.

Minimum dam discharges have been combined with 90\%ile tributary discharges. Maximum dam discharges have been combined with 10\%ile tributary discharges. These flow combinations provide near maximum differences in inundation between Peace Canyon Dam and Site C Dam operational scenarios.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Dam Discharge (m3/s)</th>
<th>Tributary Discharge (m3/s)</th>
<th>Total Discharge (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peace Canyon min</td>
<td>283</td>
<td>228</td>
<td>511</td>
</tr>
<tr>
<td>Site C min</td>
<td>380</td>
<td>0</td>
<td>380</td>
</tr>
<tr>
<td>Peace Canyon max</td>
<td>1,982</td>
<td>11</td>
<td>1,993</td>
</tr>
<tr>
<td>Site C max</td>
<td>2,540</td>
<td>0</td>
<td>2,540</td>
</tr>
</tbody>
</table>

Legend
- Dam Discharge (m3/s)
- Tributary Discharge (m3/s)
- Total Discharge (m3/s)
Peace River Inundation Map

1. Datum/Projection: NAD83/UTM Zone 10N
2. Data Source: TRIM data from B.C. Government.
3. Orthophotos created from 1:5,000 photos taken September 22, 2010; Bing Maps Aerial.

Construction of the Site C Clean Energy Project is subject to required regulatory approvals including environmental certification.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Dam Discharge (m³/s)</th>
<th>Tributary Discharge (m³/s)</th>
<th>Total Discharge (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peace Canyon minimum flow</td>
<td>283</td>
<td>769</td>
<td>1,052</td>
</tr>
<tr>
<td>Site C minimum flow</td>
<td>390</td>
<td>541</td>
<td>931</td>
</tr>
<tr>
<td>Peace Canyon maximum flow</td>
<td>1,982</td>
<td>39</td>
<td>2,021</td>
</tr>
<tr>
<td>Site C maximum flow</td>
<td>2,460</td>
<td>28</td>
<td>2,568</td>
</tr>
</tbody>
</table>

Scenario a - Minimum dam discharges have been combined with 90th percentile tributary discharges. Maximum dam discharges have been combined with 10th percentile tributary discharges. These flow combinations provide near maximum differences in inundation between Peace Canyon Dam and Site C Dam operational scenarios.
Peace River Inundation Map

Map Notes:
1. Datum/Projection: NAD83/UTM Zone 10N
2. Data Source: TRIM data from B.C. Government.
3. Orthophotos created from 1:5,000 photos taken September 22, 2010; Bing Maps Aerial.

Construction of the Site C Clean Energy Project is subject to required regulatory approvals including environmental certification.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Dam Discharge (m³/s)</th>
<th>Tributary Discharge (m³/s)</th>
<th>Total Discharge (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peace Canyon minimum</td>
<td>283</td>
<td>928</td>
<td>1,211</td>
</tr>
<tr>
<td>Site C minimum</td>
<td>1,982</td>
<td>40</td>
<td>2,022</td>
</tr>
<tr>
<td>Peace Canyon maximum</td>
<td>1,982</td>
<td>40</td>
<td>2,022</td>
</tr>
<tr>
<td>Site C maximum</td>
<td>2,940</td>
<td>24</td>
<td>2,964</td>
</tr>
</tbody>
</table>

a. Minimum dam discharges have been combined with 90th percentile tributary discharges. Maximum dam discharges have been combined with 10th percentile tributary discharges. These flow combinations provide near maximum differences in inundation between Peace Canyon Dam and Site C Dam operational scenarios.
Legend

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Dam Discharge (m³/s)</th>
<th>Tributary Discharge (m³/s)</th>
<th>Total Discharge (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peace Canyon min.</td>
<td>283</td>
<td>956</td>
<td>1,249</td>
</tr>
<tr>
<td>Site C min.</td>
<td>390</td>
<td>727</td>
<td>1,117</td>
</tr>
<tr>
<td>Peace Canyon max.</td>
<td>1,982</td>
<td>27</td>
<td>2,022</td>
</tr>
<tr>
<td>Site C max.</td>
<td>2,540</td>
<td>29</td>
<td>2,569</td>
</tr>
</tbody>
</table>

- Minimum dam discharges have been combined with 90th percentile tributary discharges. Maximum dam discharges have been combined with 10th percentile tributary discharges.
- These flow combinations provide near maximum differences in inundation between Peace Canyon Dam and Site C Dam operational scenarios.

Map Notes:
1. Datum/Projection: NAD83/UTM Zone 11N
2. Data Source: TRIM data from B.C. Government.
3. Imagery Source: Orthophotos created from 1:5,000 photos taken July 9th, 2012; Bing Maps Aerial.

Construction of the Site C Clean Energy Project is subject to required regulatory approvals including environmental certification.
Appendix G

Site C Dam to Taylor Reach
Flow-Wetted Area Relationship
Figure G-1 - Flow-Wetted Area Relationship (Site C Dam to Taylor Reach)

Notes:
1. These curves are based on 2D hydrodynamic modelling results for steady flows in the existing river channel, not including any Site C structures.
2. Ponded areas represent inundated regions in the side channels that are disconnected from the main river.
Figure G-2 - Flow-Wetted Area Relationship - Map of Old Fort Side Channel Region Considered

Photo Date: September 13, 2009
Peace River Discharge near Old Fort: ~400 m³/s
Figure G-3 - Flow-Wetted Area Relationship (Old Fort Side Channels)

Notes:
1. These curves are based on 2D hydrodynamic modelling results for steady flows in the existing river channel, not including any Site C structures.
2. Ponded areas represent inundated regions in the side channels that are disconnected from the main river.
Peace River Discharge = 400 m3/s

Peace River Discharge = 450 m3/s

Figure G-4 - Old Fort Side Channel Wetted Area for Flow of 400 m3/s and 450 m3/s

Photo Date: September 13, 2009
Peace River Discharge near Old Fort: ~400 m3/s
Peace River Discharge = 500 m³/s

Peace River Discharge = 550 m³/s

Figure G-5 - Old Fort Side Channel Wetted Area for Flow of 500 m³/s and 550 m³/s

Photo Date: September 13, 2009
Peace River Discharge near Old Fort: ~400 m³/s
Figure G-6 - Old Fort Side Channel Wetted Area for Flow of Approximately 1,900 m3/s