SECTION 7.0

ENVIRONMENTAL MANAGEMENT
7.0 ENVIRONMENTAL MANAGEMENT

7.1 Environmental Management System

The assessment of effects described in Section 6.0 involved the determination of potential effects on the social and biophysical environments as a result of the Project. The assessment further considered the mitigation and management actions that would be undertaken to minimize potential effects and risks. The implementation of these actions and the subsequent measurement of their success are best organized through an Environmental Management System (EMS).

7.1.1 EMS Framework

SCI is in the process of establishing an EMS that will be consistent with the principals described by the core values expressed in its Environmental Policy (see Section 1.2.2.5) and will comply with legal and other requirements. SCI is committed to implementing the EMS consistent with the contents of this EIS, should the Project proceed. The EMS will be finalized after the EA process has been completed in consultation with relevant stakeholders, government and Aboriginal peoples.

The EMS will:

- set out an environmental organizational structure for the Project;
- identify roles, responsibilities and resources;
- outline requirements for planning and training activities;
- describe the practices and procedures associated with the implementation of the system and monitoring of results; and,
- establish a periodic system review process for continual improvement.

7.1.2 EMS Components – Management Programs

The EMS will be a multi-faceted system comprising various components or programs that deal with different environmental management issues. The components of the EMS are introduced in Table 7.1.-1 and are described in further detail below in the report subsections that follow.

Table 7.1-1: Planned Components of SCI’s Environmental Management System

<table>
<thead>
<tr>
<th>Component</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste and Recycling Material Management Program (WRMMP)</td>
<td>The WRMMP describes the management program for wastes (solid non-hazardous, subject and hazardous wastes) and recyclable materials generated the day-to-activities on the Project site. The WRMMP identifies potential material sources and streams and the procedures for their</td>
</tr>
</tbody>
</table>
Emergency Preparedness Program (EPP)
The EPP is a mine operation’s guide to all procedures and courses of action that should be followed in the case of an on-site emergency. It identifies those responsible for taking action immediately after the discovery of and during the response to an emergency, as well as their respective duties.

Environmental Monitoring and Management Program (EMMP)
The EMMP describes the practices and procedures that will be implemented to monitor potential effects of the Project on the biophysical environment, to test predictions made in this EIS and to demonstrate compliance with applicable permit and license standards.

7.1.2.1 Waste and Recycling Material Management Program (WRMMP)

7.1.2.1.1 Context
The Waste and Recycling Material Management Program will include a description of the handling, collection, storage and disposal of material from the various waste streams generated by the Project, including both hazardous and non-hazardous solid wastes. All wastes will be handled, stored and disposed of according to the appropriate regulations and permits. The WRMMP will be communicated to all employees and contractors as appropriate so that all people on the Project site understand their responsibilities as it pertains to waste management.

7.1.2.1.2 SCI’s WRMMP
The SCI WRMMP will describe waste storage and disposal infrastructure, which will include but not necessarily be limited to the following:

- a solid non-hazardous waste disposal area, currently envisioned to be a segregated portion of the PSMF;
- a material storage area, which allows storage of all recyclable and potentially re-usable items that will ultimately be shipped off-site;
- a special waste area to handle for example waste oil, oil filters, diesel, anti-freeze, solvents and lubricants (and containers in which they are contained), aerosol containers, hydraulic hoses and batteries;
- a hazardous waste area, which allows storage of all hazardous waste materials that will ultimately be shipped off-site; and,
- a sewage treatment system to manage sewage on-site.

Procedures will be outlined that describe how the various waste and recyclable material streams will be handled and collected. SCI will promote the recycling and/or re-use of materials brought onto the mine site. Sufficient resources in the form of employee education and diversion infrastructure (e.g., material storage bins) will be provided to ensure that this is the case.
Solid non-hazardous wastes will be handled and disposed of in a manner that does not cause or is not likely to cause a threat to worker health and safety, an adverse environmental effect, windblown litter to be deposited outside the boundary of the facility, or a wildlife attraction issue.

Special wastes will be handled in a manner to prevent endangering human and wildlife health and the environment. For example all drums, and any other portable containers containing special wastes, will be covered to prevent container degradation from the sun or contamination by water from snow or rain. Incompatible substances will be stored separately to prevent contamination, fires, explosions, gaseous emissions, leaching or other discharges, or other dangerous conditions. The contents of all storage containers will be clearly marked. Stored special waste will be shipped off-site to an acceptable disposal or recycling facility. All special wastes transported off-site will be in accordance with applicable regulations, to an appropriately licensed facility by a licensed carrier.

Hazardous wastes will be stored safely and appropriately. Measures to prevent their improper disposal and release include: maintaining an inventory of hazardous materials on site; designated hazardous materials collection and storage areas; secondary containment to limit spill occurrence; and protection from inclement weather using temporary or permanent covers. Stored hazardous waste will be shipped off-site to an acceptable disposal or recycling facility. All hazardous wastes transported off-site will be in accordance with applicable regulations, to an appropriately licensed facility by a licensed carrier.

Sewage will be treated by means of an on-site tile field in conjunction with a Rotating Biological Contactor (RBC), rated at less than 10,000 L/d, and/or will be collected in portable infrastructure for offsite disposal at an existing, approved sewage disposal facility.

7.1.2.2 Emergency Preparedness Program (EPP)

7.1.2.2.1 Context

Prompt action is required to control emergency situations on a mine site. An EPP that outlines procedures and is prepared in advance is essential for effective containment of an emergency situation. An EPP helps to determine the following:

- what events or conditions require actions;
- what actions can be taken to prevent an emergency;
- what precautions would minimize the effects of an emergency, should one occur;
- what immediate actions mine personnel should take to contain an emergency;
- whether mine employees have the skills necessary to carry out the procedures outlined within the EPP and what training may be required;
- who will assume command of the emergency effort;
- who is in charge of which parts of the emergency operation;
what kinds of special services and mutual aid support are available to emergency operations; and,
how key personnel will obtain information, assess it and subsequently make critical decisions.

An EPP is developed so that there are standard response procedures for emergency situations by organizing and preparing personnel to function and respond effectively. In particular, emergency response procedures:

- assist personnel in responding quickly and effectively to an emergency;
- provide a common set of practices that govern the activities needed for an orderly response;
- outline strategies for early containment and control of an emergency; and,
- establish a common set of rules for training all emergency response personnel.

7.1.2.2.2 SCI’s EPP

The EPP or elements thereof will be communicated to all employees and contractors as appropriate so that all people on the Project site can react promptly and decisively in the event that an emergency situation arises. The EPP training plan will define the level of training required not only for those people who have a role in emergency response but all employees or contractors that access the site to perform a mine-related function. SCI will develop an EPP that includes the following elements:

- an emergency response policy - a concise policy that highlights the company’s commitment to and support for the EPP;
- the identification of those responsible for emergency preparedness plan coordination and planning;
- an emergency identification, prevention and protection process – the EPP Coordinator will use resources as necessary to identify potential emergency situations that may arise and document appropriate prevention and protection measures;
- an emergency notification plan - a plan to notify required personnel in the event of an emergency will be in place;
- the designation of an emergency operations center - the physical location of the emergency operations center will be identified and its location and telephone numbers shall be communicated in the EPP;
- the definition of duties and responsibilities of mine personnel - key emergency personnel will be named as individuals or named as per their job titles and their corresponding duties and responsibilities will be set out;
- the development of mine emergency response procedures - response procedures will be developed with three corresponding levels of response:
 - containment - the initial step to control a mine emergency;
notification - communication of the emergency to affected workers to get them to safety and key personnel for the purpose of mobilization; and,
mobilization - which occurs when the emergency operations centre has been established and has taken over directing emergency operations.

- a mine site layout - a copy of the physical layout of the mine;
- an evacuation plan – a copy of the evacuation plan including escape routes and assembly areas shall be included consistent with the up-to-date mine plan;
- a check-in/check-out procedure for emergency operations - a check-in/check-out procedure will be established to track all personnel involved in emergency response;
- provision for a mechanism for first responders consultation - a copy of the EPP and current mine plan including designated escape routes and assembly areas will be provided to local/regional emergency services;
- a description of emergency scenario communication services – the EPP will describe how effective communications will be maintained among all affected and involved parties during an emergency situation;
- a system for the dissemination of information – a plan will be set out that designates individuals who will have the responsibility to disseminate information regarding an emergency situation to ensure that only accurate and consistent information is released;
- a training plan – a training plan for all individuals named in the emergency procedures will be developed and implemented to ensure key personnel will know how to react; and,
- a continual improvement plan – the EPP will outline a review framework so that the plan is updated periodically according to standard industry practice and/or legal requirements as appropriate.

7.1.2.3 Environmental Monitoring and Management Program (EMMP)

7.1.2.3.1 Context

SCI is committed to implementing the Project in a manner that is protective of the biophysical environment through employing the mitigation strategies that have been described in this EIS and adhering to applicable regulatory requirements. This program and its components generally respond to three requirements - first, to demonstrate compliance with applicable performance standards (e.g., permit and approval limits) and/or guidelines; second, to verify that the effects of the Project are comparable to those predicted in the EIA, and third to provide a management structure for implementation of the adaptive management approach described below.

7.1.2.3.2 SCI's EMMP

SCI will prepare an EMMP that describes the practices and procedures that will be implemented to monitor potential effects of the Project on the biophysical environment. The program will be broad ranging, including all aspects of the biophysical environment. The program will include the measurement and evaluation of environmental endpoints both at the “end of pipe” and in the receiving environment.
Specific components of the EMMP that are related to follow-up monitoring are described at a conceptual level in Section 7.3 including plans for:

- air quality;
- soils and terrain;
- noise;
- surface water;
- groundwater;
- fish and fish habitat;
- wildlife and birds;
- vegetation; and
- archaeological and heritage resources.

7.1.3 Adaptive Management

SCI will use an adaptive management approach to its EMS and component pieces. Adaptive management in this context involves learning from experience and modifying subsequent behaviour in light of that experience. The basic adaptive management cycle as it will be applied by SCI is shown below in Figure 7.1-1.

![Figure 7.1-1: Structure of the Adaptive Management Cycle](image-url)
7.1.4 Application of the EMS

The EMS will be applied during all phases of the Project.

7.2 Decommissioning and Closure Plan

As indicated in Section 1.4.3.2, a proposed draft Conceptual Closure Plan has been prepared and is included as a supporting document to the EIS (see TGCL, 2012d). Conceptually, the closure phase includes activities that are designed to ensure that the Project site is closed in a manner that reduces the potential impacts on the social and natural environment, and to the extent possible returns the site to an end use that is supported by Aboriginal people, the public and government. The timetable for closure of the site includes contingency for both short-term and long-term activities. The most intense period of decommissioning of site infrastructure will occur immediately following the cessation of operations. At this time as much of the site infrastructure will be removed as is possible, while still providing sufficient resources on the site to engage in ongoing closure and post-closure activities. The specific activities that will occur during this phase of the Project include:

- decommissioning/removal of maintenance, administration and on-site support facilities;
- decommissioning/removal of off-site support infrastructure;
- decommissioning/removal of the process plant and associated ore processing equipment and facilities (pipelines, crushers, conveyors);
- decommissioning/removal of the explosives factory and magazine facilities;
- removal of power lines and electrical equipment;
- decommissioning of parts of the site road network;
- decommissioning of the potable water and sewage treatment systems;
- placement of any Type 2 material still on surface into the pits for permanent storage;
- stabilization of any stockpiles that are left on surface for the long term; and,
- reclamation of the PSMF, MRSA, mill sites and other developed areas.

Comments on specific elements of the closure activities listed above are provided below.

A combination of approaches is planned to be used to rehabilitate the open pits. The satellite pits that have been utilized for process solids and/or mine rock storage will be covered with overburden and reclaimed. New stream channels and fish habitat will be created so that water will drain from the satellite pits to the north into the primary pit. Satellite Pit 5 will be partially backfilled and flooded to create new fish habitat. An outlet stream will be created to link the new lake with the Stream 1 subwatershed. The Primary Pit will take many years to fill completely and therefore precautions will be taken to prevent inadvertent access to the pit. To this end, a boulder barrier or fencing will be constructed around the perimeter of the primary pit and warning signs will be posted. In the long-term, the primary pit will overflow in a planned and predicted manner in its southeast corner with water draining into the Stream 2 subwatershed and then to the Pic River (see TGCL, 2012c, 2012d; EcoMetrix, 2012e). The closure of the
PSMF will include re-grading and the creation of channels to restore the natural drainage patterns in the Stream 6 subwatershed and revegetation.

Closure of the MRSA will be based on the requirements as set out by the Ontario Mining Act, Regulation 240/00. The primary objectives for the MRSA closure plan include:

- ensuring slope stability;
- ensuring run-off drainage control on and around the MRSA is maintained; and,
- pursuing reclamation strategies that are consistent with or promote post closure land use.

Reclamation of the MRSA will be proactive. Horizontal surfaces will be covered with overburden and/or topsoil and subsequently revegetated using native seed. Once it has been demonstrated that water draining the MRSA meets all applicable regulatory requirements the water collection system will be dismantled and natural flows will be returned to the four subwatersheds draining the MRSA.

In addition to the physical works that comprise decommissioning and closure a phase-specific monitoring plan will also be developed (see Section 7.3). The programs will focus on evaluating the physical integrity of permanent man-made structures (e.g., dams safety inspections), the relative success of the implementation of closure and reclamation activities (e.g., revegetation success) and the potential effects of the closed mine site on the environment (e.g., surface water and groundwater quality monitoring). The nature and extent of these programs will be developed during detailed closure planning.

Conceptual closure arrangements for the PSMF and MRSA are shown in Figures 7.2-1 and 7.2-2, respectively.
Figure 7.2-1: Conceptual Closure Arrangement of the PSMF Combined Storage Area
Figure 7.2-2: Conceptual Closure Arrangement of the Mine Rock Storage Area
7.3 Monitoring and Follow-up Programs

The following describes the framework upon which compliance, follow-up and effects monitoring will be based throughout the life of the Project, including the post-closure phase. Compliance monitoring is meant to verify whether the Proponent has implemented the required mitigation measures and fulfilled the provisions of the environmental assessment with respect to public consultation, requirements for additional studies or work to be completed and all other commitments. Follow-up and effects monitoring is designed to verify the accuracy of the conclusions of the environmental assessment and to determine the effectiveness of the measures implemented to mitigate the adverse environmental effects of the Project. The follow-up and effects monitoring program also supports the EMS used to manage the environmental effects of the Project and support the implementation of adaptive management measures to address previously unanticipated adverse environmental effects.

Provincial and federal agency personnel have the overall responsibility to ensure that all appropriate mitigation measures are implemented, and to arrange for the follow-up program to be carried out as identified in this EIS report. In most instances, this responsibility will be delegated to SCI through the terms and conditions included within provincial and federal and regulatory instruments. In the case of the Marathon PGM-Cu Project the provincial and federal and regulatory instruments include those referenced in Section 1.3.4 of this report. SCI’s Environmental Management System (see Section 7.1) will serve as its own method to ensure that commitments to natural environment monitoring and mitigation measures made will be followed through to completion.

Consistent with its commitment to utilizing an adaptive management approach throughout its EMS components, SCI will review and adjust as necessary any of the proposed follow-up programs. Where monitoring program results indicate that either end-of-pipe or receiving environment data deviate from those predicted in this EIS the potential consequences (if any) of such deviations will be investigated. Additional mitigation measures may be proposed and/or implemented as appropriate. SCI is committed to undertaking this process in a transparent manner, involving government agencies, Aboriginal peoples and other stakeholders as appropriate.

The finalization of the individual programs outlined in Table 7.3-1 will occur following EA approval and prior to the issuance of the final permits/approvals to proceed with the Project. The schedule on which the programs will be implemented will also be finalized at that time.
<table>
<thead>
<tr>
<th>EIB Component</th>
<th>Specific Program Objective(s)</th>
<th>Program Structure</th>
<th>Reporting</th>
<th>Roles and Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>1. Measure air quality to assess potential changes to air quality that result from the Project, and to provide data that can be used, if required, to account for any unanticipated results.</td>
<td>Fugitive dust will be assessed using dustfall jars. Dustfall samples will be collected at appropriate intervals during construction, operation and decommissioning from appropriate locations. Results, reported as total dustfall mass per unit area, will be compared with predictions in the EIS, and to any regulatory criteria. Total metal levels will also be measured. Effects to air quality from all sources will be assessed through high-volume sample of ambient air at locations within the Project study area, but outside the lease boundary. Sampling will occur periodically during the Project lifespan, using standard protocols, with sampling conducted at sites upwind and downwind of the lease boundary. Results from this testing will be compared to the appropriate federal and provincial ambient air criteria and to the prediction in the EIS.</td>
<td>Results will be provided to appropriate government agency staff as prescribed in the provincial ECA. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.</td>
<td>Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required. OMOE - as the ECA Issuer OMOE responsibilities will be prescribed in the ECA.</td>
</tr>
<tr>
<td>Noise</td>
<td>1. Determine the effectiveness of design-related mitigations to ensure noise levels are within those predicted in the EIS. 2. Provide the public a means to voice concerns over nuisance noise levels that may be encountered.</td>
<td>Develop a complaints procedure for members of the public to raise reasonable concerns or complaints as it concerns the development or operation of the mine and mine-related infrastructure. The protocol will address how a complaint will be initiated, how complaints and records associated with them are managed, how complaints are investigated and how complaints are resolved. Noise measurements will be taken at sensitive receptor locations (to be determined) during the site preparation phase and the initial phases of pit development when blasting occurs at the ground surface. The plan will be in place for all Project phases.</td>
<td>Results will be provided to appropriate government agency staff as prescribed in the provincial ECA. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.</td>
<td>Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required. OMOE - as the ECA Issuer OMOE responsibilities will be prescribed in the ECA.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>1. To assess potential impacts on groundwater levels and flow in the study area. 2. To assess potential changes in groundwater quality as the result of solute migration at the site.</td>
<td>The existing groundwater monitoring well network will be reviewed and enhanced as necessary to ensure there is up-, down- and cross-gradient coverage of the site and key infrastructure so that the program provides appropriate horizontal and vertical spatial resolution. Areas of focus will include the downstream ends of the PSMF and MRSA to assess seepage. Water levels and water quality to be measured at regular intervals. Open pit dewatering rates to be measured.</td>
<td>Results will be provided to appropriate government agency staff as prescribed in the provincial ECA. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.</td>
<td>Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required. OMOE - as the ECA Issuer OMOE responsibilities will be prescribed in the ECA.</td>
</tr>
<tr>
<td>Surface water</td>
<td>1. Measure water quality to confirm that source term and receiving water quality predictions are consistent with those presented in the EIB and are in compliance with all applicable regulations. 2. Measure water quantity for discharges from site (PSMF effluent, MRSA drainage) and key locations in surface waters around the Project site.</td>
<td>Water quality and quantity will be measured for point source discharges to receiving environments (PSMF discharge, MRSA discharge) using approved methods. Source point monitoring will occur consistent with ECA and MMER requirements. All applicable parameters will be monitored at facility commissioning to establish and confirm emissions. Results will be compared to the values used in the EIS, and to applicable regulatory criteria or objectives. Water quality to be measured in surface water receiving environments (Hare Lake, Stream 6 [post-closure], Pic River) consistent with ECA and MMER requirements. All applicable parameters will be monitored at facility commissioning to establish and confirm emissions. Results will be compared to the values used in the EIS, and to any applicable regulatory criteria or objectives.</td>
<td>Results will be provided to appropriate government agency staff as prescribed in the provincial ECA. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.</td>
<td>Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required. OMOE - as the ECA Issuer OMOE responsibilities if any will be prescribed in the ECA. EC – as the issuer of the MMER approval responsibilities if any will be prescribed in the approval.</td>
</tr>
<tr>
<td>Fish and Fish Habitat</td>
<td>1. Assess potential impacts on fish and fish habitat as result of the Project. 2. Assess the effectiveness of fish habitat compensation measures that are implemented as part of the fish habitat compensation plan.</td>
<td>Potential Project-related effects on fish and fish habitat (including benthos and sediments) will be assessed consistent with EC’s EEM program for metal mines. The program will apply to both Hare Lake and Pic River. Pre-operational EEM surveys will be conducted at both locations to provide further baseline characterization. EEM program monitoring is required under MMER during the operations phase. Subsequent biological post-closure monitoring will be detailed in the Closure Plan and will be commensurate with the level of interaction between the site and fish and fish habitat at that time. A specific program designed to monitor metal levels in fish tissues in response to concerns that metal tissue levels will be affected by mine releases. The exact nature of the program will be developed in communications with interested parties including the public, Aboriginal peoples and government. The program will focus on recreational, sport fish and for fish collected as part of an</td>
<td>Results will be provided to appropriate government agency staff as prescribed in the provincial ECA. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.</td>
<td>Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required. EC – has regulatory responsibilities as it pertains to the EEM program. DFO – as the issuer of the Compensation Plan relate approval responsibilities if any will be prescribed in the approval. OMOE/MMNR – as prescribed in the ECA or as prescribed in an co-operative agreement with EC/DFO MNDM – has responsibility for overall closure of site and...</td>
</tr>
</tbody>
</table>
Terrain and soils

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Assess the potential impacts of air releases on soil quality in the study area.</td>
</tr>
<tr>
<td>3.</td>
<td>Determine the suitability of soils for reclamation purposes.</td>
</tr>
</tbody>
</table>

Soils samples will be collected at stations that are used to also measure air quality. Metal analyses on the soils will provide a direct measure of metals deposition as the result of air releases. The plan will be in place for all Project phases. Stability of dams, embankments and the pit walls will be assessed during all project phases. As-built evaluations will be completed by qualified engineers as development occurs to ensure adherence to design. PSFM dam inspections will occur regularly and into the closure phase. A soils salvage and storage plan will be developed to identify the suitability of materials generated during stripping for reclamation purposes. The plan will include a strategy for storage of these materials.

Results will be provided to appropriate government agency staff. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.

Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required.

Vegetation

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Assess the propensity of invasive and noxious plants to colonize disturbed areas around the Project site.</td>
</tr>
<tr>
<td>2.</td>
<td>Assess the level of interaction between SCI personnel (or contractors) and wildlife.</td>
</tr>
</tbody>
</table>

Surveillance monitoring will occur around the Project site to identify areas where invasive or noxious plants may be colonizing or encroaching on disturbed areas. When identified the plants will be removed.

Results will be provided to appropriate government agency staff. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.

Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required.

Wildlife

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Assess the effects of the Project on wildlife mortality as the result of building strikes, transmission line strikes and vehicle and equipment strikes.</td>
</tr>
<tr>
<td>2.</td>
<td>Assess the level of interaction between SCI personnel (or contractors) and wildlife.</td>
</tr>
</tbody>
</table>

A self-reporting program to be implemented for all SCI personnel and contractors. All wildlife deaths as result of strikes to be reported to a designated individual. A self-reporting program to be implemented that tracks interactions between SCI personnel and contractors and wildlife, in special as it pertains to aggressive wildlife behavior.

Results will be provided to appropriate government agency staff. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.

Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required.

Migratory Birds

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ensure that site development proceeds consistent with the provisions of the Migratory Birds Act.</td>
</tr>
</tbody>
</table>

Monitoring of land and tree clearing activities if the activities are conducted during the nesting season. Qualified biologists will survey areas to be cleared in advance of clearing to identify nests sites. The nest sites will be demarcated and the location including an appropriate buffer will be avoided until the nest is abandoned. A formal protocol will be developed for government agency review.

Results will be provided to appropriate government agency staff. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.

Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required.

Species at risk (Woodland Caribou)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Assess the extent to which Woodland Caribou move through or use the site</td>
</tr>
</tbody>
</table>

Details to be developed in cooperation with OMNR.

Results will be provided to appropriate government agency staff. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.

Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required.

Economic issues

No specific follow-up monitoring is proposed.

Social issues

No specific follow-up monitoring is proposed.

Resource uses

No specific follow-up monitoring is proposed.

Navigable waters

No specific follow-up monitoring is proposed.

Human health

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Assess potential Project-related effects on human health.</td>
</tr>
</tbody>
</table>

Potential COPC related effects will be monitored as part of the air, surface water and ground water monitoring program. A reporting system will be developed to track traffic related issues, including incidence of safe vs. unsafe vehicles use and traffic accident frequency.

Results will be provided to appropriate government agency staff. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.

Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required.

Archaeological and heritage resources

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ensure that heritage resources are not affected through land clearing activities.</td>
</tr>
</tbody>
</table>

All personnel and contractors involved in land clearing will be provide training on recognizing potential heritage resources and a protocol will be put into place that will direct personnel and contractors what to do in the event heritage resources are encountered.

Results will be provided to appropriate government agency staff. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed.

Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required.
Aboriginal considerations | No specific monitoring program focusing on the effects of the Project on Aboriginal considerations such as traditional land uses, collection of country foods, the PRFN community trapline, traditional diet and heritage features is proposed other than as specifically negotiated in any benefits agreement. SCI will continue to consult with Aboriginal people to update its TK information and address potential issues that arise in a proactive manner.

Aboriginal archaeological resources | 1. Ensure that Aboriginal archaeological are not affected through land clearing activities. All personnel and contractors involved in land clearing will be provided training on recognizing potential Aboriginal archaeological resources and a protocol will be put into place that will direct personnel and contractors what to do in the event heritage resources are encountered. Results will be provided to appropriate government agency staff. A framework for reporting monitoring program results to the public and Aboriginal peoples will be developed. Proponent - implementing the follow-up program, reporting the results to the appropriate agencies and others as appropriate, and implementing adaptive management measures where required.

Accidents and malfunctions | As described in Section 6.3: Individual events would be assessed/monitored on a case-by-case basis.

Effects of the environment on the Project | No specific follow-up monitoring is proposed.

Capacity of renewable resources | No specific follow-up monitoring is proposed.

Cumulative effects | As described above, SCI will work with OMNR to develop a monitoring framework for Woodland Caribou.
7.4 Occupational Health and Safety Plan (OHSP)

7.4.1 Context

SCI will develop an OHSP consistent with the corporate principal “Everyone Goes Home Safe, Every Day” (see Section 1.2.2.4). The OHSP will be developed to conform to the requirements of the Occupational Health and Safety Act, Regulation 854 – Mines and Mining Plants.

7.4.2 SCI’s OHSP

SCI will develop an OHSP that includes but will not necessarily be limited to the following elements:

- an OHS policy - a concise policy that highlights the company’s commitment to and support for the OHSP;
- the identification of roles and responsibilities;
- the definition of the plan’s scope and limitations;
- a commitment from SCI management to provide the resources necessary to implement the plan in an effective manner;
- a mechanism for employee participation;
- the development of an OHS Manual and description of how its contents will be communicated to employees;
- an employee training program;
- a documented process whereby workplace hazards are identified, assessed as to their significance and appropriate hazard control strategies are adopted;
- an incident/accident reporting and investigation procedure;
- a document and record management system; and,
- a continual improvement plan – the OHSP will outline a review framework so that plan performance is evaluated and updated according to standard industry practice and/or conformity to legal requirements as appropriate.

Among various other things the OHSP will include procedures for the management of wildlife-human conflicts, specifically bear-human and wolf-human conflicts. These programs will be developed consistent with guidance provided by the OMNR regarding human-wildlife conflict (http://www.mnr.gov.on.ca/en/Business/FW/2ColumnSubPage/STEL02_168419.html). In both cases, the primary concern has to do with the proper disposal of food wastes. Improper disposal can attract bears and wolves to areas that are frequented by mine staff.