<table>
<thead>
<tr>
<th>Identifier</th>
<th>Topic</th>
<th>Reference to EIS/EA Report</th>
<th>Summary of Previous Comment</th>
<th>Proponent’s Response to Previous Comment</th>
<th>Follow-up comment/ Request for Information</th>
<th>New Proponent Response</th>
<th>Subsequent Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOE-GW 2B</td>
<td>Groundwater</td>
<td>Hydroteology TSD</td>
<td>A significant shortcoming of the EA is that there has been no groundwater modelling conducted for the TMF to estimate groundwater flows and assess mitigation and contingency measures. As the project proceeds to permitting and approvals, intensive groundwater investigation is going to be required in the area of the TMF to identify groundwater flow patterns and receivers; and to provide sufficient data to set up a groundwater model for purposes of quantifying seepage and determining the requirements for seepage collection and the subsequent effectiveness of these facilities. Although the water balance approach has demonstrated that everything being equal, the uninhibited discharge of overburden is 10 times less than the horizontal conductivity is not supported by limited soil information (boreholes) available at the location. This requires both some further investigation, and determination of the model’s sensitivity to this parameter. Despite these shortcomings, it is my opinion that the modelling that has been done is suitable for the purposes of the EA as the work done has quantified the risk to the surface water receiver and identified effective mitigation and contingency measures. As such, the outstanding concerns can be addressed in the MOECC’s permitting, which should consider the seepage and loading rates reported in the EA as commitments that could be recognized as limits in an ECA. To address the outstanding concerns, the MOECC will require the proponent carry out further work to support permit applications, which will include (but not necessarily be limited to) additional boreholes and monitoring wells in the area of the TMF to provide a better understanding of the area hydrogeology and improve the model calibration; expansion of the model to encompass all of the TMF and thereby identify additional receptors and quantify seepage losses to all receptors, including Marmion Reservoir; detailed design of the proposed mitigation measures; updated modelling reflecting the final design of the mitigation measures; and calibration and sensitivity analysis of the model(s). Typically, the proponent should be consulting with MOECC staff to determine the additional information that will be required to support applications for approvals and permits.</td>
<td>Please see response to MOE GW-1, which identifies additional modelling completed and confirms Canadian Malartic Corporation’s commitment to adjust the detailed design, and monitoring based on additional data collected at the detailed design phase, and ongoing discussions with the regulators during the permitting phase. Further details of this modelling evaluation are provided in the memorandum entitled ‘Tailings Management Facility, 3D Groundwater Modelling’ provided in Part D of the Addendum to the Version 3 EIS/EA as a supplemental to the Final EIS/EA Report.</td>
<td>Date: March 2014</td>
<td>Date: June 2015</td>
<td>Date: August 2015</td>
</tr>
</tbody>
</table>