<table>
<thead>
<tr>
<th>Identifier</th>
<th>Topic</th>
<th>Summary of Comment</th>
<th>Proponent’s Response</th>
<th>Subsequent Comment</th>
</tr>
</thead>
</table>
| MNRF WTCM-5 | Low Water Level and Outflow Periods at Raft Lake Dam | NRF requires clarification on the following aspects of this plan:
a) What "site storage" site will be used as the source of the discharge? Both PPCP and TMF? If so, what is difference between discharged water quality from these facilities?
b) MNRF recognizes the requirement of 335 m³/day of water from Marmion Reservoir for potable water. However, the 7,200 m³/day for reagent mixing due to water quality reasons suggests the water from the PPCP or TMF is unfit for discharge to the environment. The document states in multiple locations that Marmion Reservoir water is preferred for reagent mixing for water quality reasons. MNRF requires a detailed explanation as to why the storage water in the PPCP and TMF cannot be used for reagent mixing. What are the monitoring and reporting plans of discharged (effluent) water quality from the TMF or PPCP?
c) MNRF is concerned regarding the potential impacts of discharged TMF or PPCP water quality during drought or other low water conditions. It is unclear whether prolonged drought will increase concentrations within the TMF/PCPP due to water-recycling, evaporation, etc. In addition, lower water levels in Marmion Reservoir will likely result in a reduced dilution capacity. The impact of discharged effluent on fish spawning (i.e. fertilization, incubation and hatching) remains unclear. At multiple locations within this document it states that CMC plans to avoid using the water from the PPCP and TMF for reagent mixing due to water quality and in place use fresh water from the Marmion Reservoir (offset by discharging). What impact would this water quality have on spawning fish? What impact would different climatic conditions (i.e. drought, flood, spring freshet, etc.) and flows have on the water quality discharged? | a) The discharge will be sourced from either the Process Plant Collection Pond (PPCP) or the TMF. Regardless of the source, water will undergo treatment at the effluent treatment plant prior to discharge. Site discharge will be subject to and will comply with discharge water quality requirements of the Environmental Compliance Approval (ECA) for the Project (to be sought during the permitting phase of the project). At the discharge location, effluent mixing and dilution will be enhanced by a diffuser.
b) Although it has been demonstrated through the EIS/EA that discharge of treated effluent will impose no adverse effect on aquatic life in Marmion Reservoir, the treated effluent cannot be used for reagent mixing because concentrations of some parameters are slightly elevated compared to the water in the reservoir and this can be problematic for the chemical processes employed by the process plant and can result in accelerated scaling of mechanical equipment. Site discharge will be subject to and will comply with monitoring requirements, reporting requirements and discharge water quality requirements of the ECA for the Project (to be sought during the permitting phase of the project).
c) Discharge will be treated prior to release and will meet water quality criteria required by the ECA for discharge, regardless of climatic factors. The purpose of the ECA water quality and discharge requirements are to avoid potential impact to aquatic life. Should monitoring during drought periods indicate that it is not possible to meet the ECA requirements, potential mitigation would include additional recycling within the operations to the extent practicable for a period of time (i.e. to the extent the equipment can be operated without buildup of scale affecting operations). Although unexpected and considered an upset condition, should prolonged periods of drought occur where it would not be possible to meet ECA requirements, or operate equipment without undue cost for maintenance then, CMC would, by necessity, reduce discharge flows, or operating capacity of the mine for a period of time as a final contingency. | Date: December 2016 |